LIST OF FIGURES

Fig.1.1 Frequency Division Multiplexing	.2
Fig.1.2 Time-Frequency plot of Orthogonal Frequency Division Multiplexing signal	3
Fig 1.3 (a) A regular FDM- single carrier (b) Orthogonal-FDM	3
Fig.1.4 Orthogonal Frequency Division Multiple Access signal	.4
Fig.1.5 OFDM/A communication Architecture with Cyclic Prefix	.5
Fig.1.6 Proposed 2D-DFT architecture in paper	11
Fig.2.1 OFDM spectrum with 8 Sub Carriers	23
Fig.2.2 OFDM Transceiver illustrating process of OFDM in AWGN channel?	25
Fig.2.3 Block diagram OFDMA uplink transmission	26
Fig.2.4 Three subcarrier allocation schemes	27
Fig.2.5 Block diagram of OFDMA downlink transmission	28
Fig.2.6 Overlapping spectra of subcarriers per OFDM symbol	29
Fig.2.7 Typical schematic of perfect OFDM block showing Guard band T_{cp}	32
Fig.3.1 Symbols used in Digital filter structures	38
Fig.3.2 First stage of 8-point Decimation in Frequency FFT algorithm	44
Fig.3.3 Butterfly structure of Decimation in Frequency FFT algorithm	45
Fig.3.4 Structure of 8-point Decimation in Frequency FFT algorithm	46
Fig 3.5 Flowchart of Addition and Subtraction with Signed-Magnitude Data4	47
Fig.3.6 Simulation output of 16 bit Signed magnitude addition	47
Fig.3.7 The Simulated output of 8-point FFT	48
Fig.3.8 Block diagram of the Variable length FFT processor	49
Fig.3.9 Pipeline structure of 64-point FFT Processor	50
Fig.3.10 Internal Block diagram of the 64-point FFT module	51
Fig.3.11 FFT 64 with two 8 point FFTs MATLAB results	52
Fig.3.12 PING PONG memory.	53
Fig.3.13 PING PONG memory Read and Write operations	54
Fig.3.14 DDS Compiler Core	56
Fig.3.15 Simulation result of Variable length FFT processor for OFDMA	56
Fig.3.16 Expanded Simulation result of Variable length FFT processor for OFDMA	57

Fig.3.17 Chipscope Synthesis result of Variable length FFT processor for OFDMA58
Fig.4.1 BER representation of digital modulation schemes
Fig.4.2 representation of M-PSK and M-QAM modulation schemes62
Fig.4.3 Simulation of digital Modulation schemes
Fig.4.4 SNR VS BER Comparison of AWGN, Rayleigh and Rician Fading channels64
Fig.4.5 MATLAB simulation of AWGN, Rayleigh and Rician channels65
Fig 4.6 BER of Rayleigh fading channel with various OFDM frames66
Fig.4.7 Multipath propagation between transmitter and receiver antennas66
Fig.5.1 A generic adaptive equalizer73
Fig.5.2 BER Analysis of LMS Equalizer for QAM based OFDM/A System74
Fig.5.3 BER Analysis of RLS Equalizer for QAM based OFDM/A System75
Fig.5.4 BER Analysis of CMA Equalizer for QAM based OFDM/A System76
Fig.5.5 BER Analysis of LMS, RLS and CMA Equalizer for OFDM/A System77
Fig.6.1 Pictorial view of vertex-5 FPGA board80
Fig.6.2 Flow of Synthesis of FFT Window positioned OFDMA81
Fig.6.3 RTL view of Variable length FFT processor
Fig.6.4 Internal Schematic of variable length FFT processor
Fig.6.5 RTL View of 1024-pt-FFT85
Fig.6.6 Internal Schematic of 1024-pt FFT85
Fig.6.7.1 (a) Simulation of Variable length FFT processor with delay=0 $\mu s 86$
Fig.6.7.1 (b) Simulation result with index '10' and peak starting at 43.09 μs when
delay=0 µs
Fig.6.7.1 (c) Simulation result with index '11' and peak starting at 111.944 μs when
delay=0.41 μs
Fig.6.7.1 (d) Simulation result with index '11' and peak starting at 114.052 μs when
delay=2.51 µs
Fig.6.8.1. (a) Synthesis of Variable length FFT processor with delay= $0 \ \mu s$ 90
Fig.6.8.1. (b) Synthesis of Variable length FFT processor with delay=0.41 μ s91
Fig.6.8.1. (c) Synthesis of Variable length FFT processor with delay=2.51 μ s92
Fig.6.9.1 Symbols going to IFFT for OFDMA implementation
Fig.6.9.2 Symbols coming from IFFT output for OFDMA implementation94 XVII

Fig.6.9.3 Simulation of window positioned OFDMA	94
Fig.6.9.4 Synthesis result of window positioned OFDMA	95
Fig 6.10 BER VS SNR of Conventional OFDMA system in MATLAB	102
Fig 6.11 BER VS SNR of FFT Window positioned OFDMA	102
Fig B.1 FPGA Architecture	113
Fig B.2 Xilinx ISE Design Flow	115
Fig B.3 Chip Scope Pro Cores Description	116
Fig B.4 Modelsim Simulation Flow	118
Fig B.5 Project Flow	119
Fig B.6 Top-Down Design Flow with Precision RTL Synthesis	120