
APPENDIX-A 

ITU CHANNEL MODEL 

 

A.1 CHANNEL MODELS FOR LTE 

Channel models are heavily dependent upon the radio architecture. A scalable 

multi-cell architecture with Non-Line-of- Sight (NLOS) conditions becomes 

necessary. Typically, the scenario is as follows: 

 Cells are less than 10 km in radius, variety of terrain and tree density types 

  Under-the-eave/window or rooftop installed directional antennas (2 10 m) 

at the receiver 

 15 - 40 m BTS antennas 

  High cell coverage requirement. 

The wireless channel is characterized by: 

 Path loss (including shadowing) 

 Multipath delay spread 

 Fading characteristics 

 Doppler spread 

  Co-channel and adjacent channel interference 

It is to be noted that these parameters are random and only a statistical 

characterization is possible. The above propagation model parameters depend 

upon terrain, tree density, antenna height and beam width, wind speed, and season 

(time of the year). The wireless channels can be modeled using AWGN (Additive 

White Gaussian noise, ITU Vehicular and Pedestrian models [96]. The multipath 

fading is modeled as a tapped-delay line with 6 taps with non-uniform delays. The 

gain associated with each tap is characterized by a distribution (Rician with a K-

factor > 0, or Rayleigh with K-factor=0) and the maximum Doppler frequency. 

For each tap, the method of filtered noise is used to generate channel coefficients 



with the specified distribution and spectral power density. The definition of the 4 

specific ITU channels [97] is shown in the following table A.1 and A.2 

Where P = Power in each tap in dB, K = Rician K-factor in linear scale, Tau = tap 

delay in µs, Doppler = Doppler maximal frequency parameter in Hz,  

K-factor: The k-factor is defined as the ratio of the power in the fixed component 

to the power in the variable component. If it is zero, the channel is Rayleigh. For 

larger values, the channel is assumed to be Rician in nature. 
Table A.1 Extended Pedestrian Model of ITU 

Tap Tap Delay (µs ) Power (P) in dB 

1 0 0 

3 0.03 -1.0 

4 0.07 -2..0 

5 0.09 -3.0 

6 0.11 -8.0 

7 0.19 -17.2 

8 0.41 -20.8 

 

Table A.2 Extended Vehicular Model of ITU 

Tap Tap Delay (µs ) Power (P) in dB 

1 0 0 

3 0.03 -1.4 

4 0.15 -1.5 

5 0.31 -3.6 

6 0.37 -0.6 

7 0.71 -9.1 

8 1.09 -7.0 

9 1.73 -12.0 

10 2.51 -16.9 

 

 



APPENDIX-B 

SYSTEM DESIGN ON FPGA 

 

B.1 INTRODUCTION TO FPGA 

Field-Programmable Gate Arrays (FPGAs) is specifically designed to meet the 

needs of high volume, cost-sensitive consumer electronic applications. The Xilinx 

family offers densities ranging from 100,000 to 1.6 million system gates. FPGAs 

avoid the high initial cost, the lengthy development cycles, and the inherent 

inflexibility of conventional ASICs. Also, FPGA programmability permits design 

upgrades in the field with no hardware replacement necessary, an impossibility 

with ASICs. 

B.1.1 Architectural Overview 

The FPGA architecture consists of five fundamental programmable functional 
elements as shown in Fig B.1 (a) [98]: 

 Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables 

(LUTs) that implement logic plus storage elements used as flip-flops or 

latches. CLBs perform a wide variety of logical functions as well as store 

data. 

 Input/ Output Blocks (IOBs) control the flow of data between the I/O 

pins and the internal logic of the device. Each IOB supports bidirectional 

data flow plus 3-state operation. Supports a variety of signal standards, 

including four high-performance differential standards. Double Data-Rate 

(DDR) registers are included. 

 Block RAM provides data storage in the form of 18-Kbit dual-port blocks. 

 Multiplier Blocks accept two 18-bit binary numbers as inputs and 

calculate the product. The  provide 4 to 36 dedicated multiplier 



blocks per device. The multipliers are located together with the block 

RAM in one or two columns depending on device density. 

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully 

digital solutions for distributing, delaying, multiplying, dividing, and 

phase-shifting clock signals. 

 

 

Fig B.1 FPGA Architecture 

 

B.2 Xilinx ISE TOOL FLOW 
 The FPGA configuration is generally specified using a hardware 

description language (HDL), similar to that used for an application-specific 

integrated circuit (ASIC). FPGAs can be used to implement any logical function 

that an ASIC could perform. The Integrated Software Environment (ISE) is the 

Xilinx design software suite that allows you to take the design from design entry 

through Xilinx device programming. The ISE Project Navigator manages and 

processes the design through the following steps in the ISE design flow. 

 

 



B.2.1 Design Entry:  

          Design entry is the first step in the ISE design flow. During design entry, 

you create the source files based on the design objectives. You can create the top-

level design file using a Hardware Description Language (HDL), such as VHDL, 

Verilog, or ABEL, or using a schematic. You can use multiple formats for the 

lower-level source files in the design. If work starts with a synthesized EDIF or 

NGC/NGO file, design entry and synthesis steps can be skipped and start with the 

implementation process. 

B.2.2 Synthesis:  

After design entry and optional simulation, you run synthesis. During this step, 

VHDL, Verilog, or mixed language designs become netlist files that are accepted 

as input to the implementation step. 

B.2.3 Implementation: 

 After synthesis, you run design implementation, which converts the logical 

design into a physical file format that can be downloaded to the selected target 

device. From Project Navigator, you can run the implementation process in one 

step, or you can run each of the implementation processes separately. 

Implementation processes vary depending on whether you are targeting a Field 

Programmable Gate Array (FPGA) or a Complex Programmable Logic Device 

(CPLD). 

B.2.4 Verification: 

 You can verify the functionality of the design at several points in the design flow. 

You can use simulator software to verify the functionality and timing of the 

design or a portion of the design. The simulator interprets VHDL or Verilog code 

into circuit functionality and displays logical results of the described HDL to 

determine correct circuit operation. Simulation allows you to create and verify 

complex functions in a relatively small amount of time. You can also run in-

circuit verification after programming the device. 

 

 



B.2.5 Device Configuration: 

After generating a programming file, you configure the device. During 

configuration, you generate configuration files and download the programming 

files from a host computer to a Xilinx device. 

Synthesis using Xilinx can be done by following steps: 

1) Now create a new project and select device VertexX5pro and then 

XC5VLX130T 

2) Now add source code. 

3) Go to Implementation 

4) Synthesis XST 

5) Now to change to Behavioral simulation  

6) Run the source code 

 
Fig B.2 Xilinx ISE Design Flow 

 

 

 



B.3 CHIPSCOPE 
 Chipscope is an embedded, software based logic analyzer. By inserting an 

your design and connecting them properly, you can monitor any or all of the 

signals in your design. Chipscope provides you with a convenient software based 

triggering options and viewing the waveforms. Below Figure shows a block 

diagram of a Chip Scope Pro system. Users can place the ICON, ILA, VIO, and 

ATC2 cores (collectively called the Chip Scope Pro cores) into their design by 

generating the cores with the Core Generator and instantiating them into the HDL 

source code. We can also insert the ICON, ILA, and ATC2 cores directly into the 

synthesized design netlist using the Core Inserter tool. The design is then placed 

and routed using the ISE 14.2 implementation tools. Next, we download the bit 

stream into the device under test and analyze the design with the Analyzer 

software. 

 
Fig B.3 Chip Scope Pro Cores Description 

 

 



B.3.1 ICON Core: 

 All of the cores use the JTAG Boundary Scan port to communicate to the host 

computer via a JTAG download cable. The ICON core provides a communications path 

between the JTAG Boundary Scan port of the target FPGA and up to 15 ILA, IBA/OPB, 

IBA/PLB, VIO, and/or ATC2 core. For devices not of the Virtex-4 or Virtex-5 families, 

the ICON core uses either the USER1 or USER2 JTAG Boundary Scan instructions for 

communication via the BSCAN_VIRTEX primitive. The unused USER1 or USER2 scan 

chain of the BSCAN_VIRTEX primitive can also be exported for use in your application, 

if needed.   

For Virtex-4 and Virtex-5 devices, the ICON core uses any one of the USER1, USER2, 

USER3 or USER4 scan chains available via the BSCAN_VIRTEX primitives. In Virtex-

4 and Virtex-5 devices, it is not necessary to export unused USER scan chains because 

each BSCAN_VIRTEX primitive implements a single scan chain. 

 

B.3.2 ILA Core: 

The ILA core is a customizable logic analyzer core that can be used to monitor any 

internal signal of your design. Since the ILA core is synchronous to the design being 

monitored, all design clock constraints that are applied to your design are also applied to 

the components inside the ILA core. The ILA core consists of three major components: 

 Trigger input and output logic:  

  Trigger input logic detects elaborate trigger events. 

  Trigger output logic triggers external test equipment and other logic. 

 Data capture logic: 

  ILA cores capture and store trace data information using on-chip block RAM  

Resources. 

 Control and status logic: 

  Manages the operation of the ILA core. 

 

B.4 MODELSIM FOR SIMULATION 
Modelsim is a verification and simulation tool for VHDL, Verilog, 

SystemVerilog, systemC, and mixed-language designs. Modelsim optimizations 

are automatically performed on all designs. These optimizations are designed to 



maximize simulator performance, yielding improvements above 10X, in some 

Verilog designs, over non-optimized runs. 

The following diagram shows the basic steps for simulating a design in 

ModelSim. 

 
Fig B.4.Modelsim Simulation Flow 

 Creating the working library: - In ModelSim, all designs, be they VHDL, Verilog, 

or some combination thereof, are compiled into a library. You typically start a new 

simulation in ModelSim by creating a working library called "work". "Work" is the 

library name used by the compiler as the default destination for compiled design 

units. 

 Compiling your design:- After creating the working library, you compile your design 

units into it. The ModelSim library format is compatible across all supported 

platforms. You can simulate your design on any platform without having to 

recompile your design. 

 Running the simulation:- With the design compiled, you invoke the simulator on a 

top-level module (Verilog) or a configuration or entity/architecture pair (VHDL). 

Assuming the design loads successfully, the simulation time is set to zero, and you 

enter a run command to begin simulation. 



 
Fig B.5 Project Flow 

B.5 VHDL 

 VHDL is a high level description language for system and circuit design. The 

language supports various levels of abstraction. In contrast to regular net list 

formats that supports only structural description and a Boolean entry system that 

supports only dataflow behavior, VHDL supports a wide range of description 

styles. These include structural descriptions, dataflow descriptions and behavioral 

descriptions. 

The structural and dataflow descriptions show a concurrent behavior. That is, all 

statements are executed concurrently, and the order of the statements is not 

relevant. On the other hand, behavioral descriptions are executed sequentially in 

processes, procedures and functions in VHDL. The behavioral descriptions 

resemble high-level programming languages. 

 

 



Fig B.6.Top-Down Design Flow with Precision RTL Synthesis 
 

 VHDL allows a mixture of various levels of design entry abstraction. 

Precision RTL Synthesis Synthesizes will accept all levels of abstraction, and 

minimize the amount of logic needed, resulting in a final net list description in the 

technology of your choice. The Top-Down Design Flow is shown in Figure B.6.  

 

 


