DEVELOPMENT OF GPS AND OBSTACLE AVOIDANCE BASED LOW ALTITUDE NAVIGATION SYSTEM FOR A POWERED PARACHUTE AERIAL VEHICLE

By VINDHYA DEVALLA COLLEGE OF ENGINEERING STUDIES DEPARTMENT OF AEROSPACE ENGINEERING

Submitted

IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

То

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Dehradun June, 2015

www.upes.ac.in

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis on "Development of GPS and Obstacle Avoidance Based Low Altitude Navigation System for A Powered Parachute Aerial Vehicle" by Vindhya Devalla in Partial completion of the requirements for the award of the Degree of Doctor of Philosophy is an original work carried out by her under my supervision and guidance.

It is certified that the work has not been submitted anywhere else for the award of any other diploma or degree of this or any other University.

12015

Dr. Om Prakash **Thesis Supervisor** Associate Professor & Head Department of Aerospace Engineering (COES) University of Petroleum and Energy Studies, Dehradun

BIDHOLI CAMPUS Energy Acres, PO Bidholi Via Prem Nagar, Dehradun 248007 (UK), INDIA, T +91-135-2102690/1, 2694201/3/8 F +91-135-2694204 KANDOLI CAMPUS Knowledge Acres, Vill. Kandoli, PO Bidholi Via Premnagar, Dehradun 248007 (UK), INDIA, T +91-135-2102647/2102760 CORPORATE OFFICE 2rd Floor, 210, Okhla Industrial Estate, Phase III, New Delhi-110020, INDIA, T +91-11-41730151-53 F +91-11-41730154

ACKNOWLEDGEMENTS

I, first and foremost, would like to express my deepest gratitude to Dr. Om Prakash, my supervisor, for encouraging me to take up a project on Parafoil UAVs as the topic of research. Dr. Om Prakash has been a source of inspiration and a monument of motivation to me throughout this work. Without him, this work would never have been completed. I am thankful to Dr Kamal Bansal, Dean, College of Engineering Studies for the motivational and administrative support throughout.

My heartfelt thanks to Dr. Parag Diwan, Chancellor Dr. S J Chopra, Vice Chancellor Dr. Shrihari, President Prof. Utpal Ghosh for motivating me with seed fund, space and environment in this serene campus of University of Petroleum and Energy Studies, Dehradun, in India to carry out this work. I would also like to thank Science and Engineering Research Board - Department of Science and Technology (DST - SERB) for granting me initial fund for understanding the feasibility of the project. I would like to mention a special thanks to team R&D, UPES for providing constant guidance and support in getting the sponsored project from DST SERB.

I should mention my gratitude to Mr. Amit Kumar Mondal, who is there with me throughout the journey especially when I had tough times, measuring it by word of thanks is not adequate/appropriate. Also, I thank Dr. Manish Prateek, Mr. A J Arun Jeya Prakash and Mr. Karthik Reddy for supporting me during the last leg of this work. I am thankful to each and every faculty colleague of Aerospace Engineering department for their support and cooperation. Finally, I must express my very profound gratitude to my parents and my sister for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Vindhya Devalla

University of Petroleum and Energy Studies June 2015 DEDICATED TO

MY PARENTS

& ALMIGHTY

DECLARATION

I do hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Vindhya Devalla

Doctoral Research Fellow, Department of Aerospace Engineering University of Petroleum and Energy Studies Dehradun-248007

CONTENTS

Conte	nts	Page No.
1.	Introduction	1
	1.1. Unmanned Systems	1
	1.2.Types Unmanned Aerial Vehicles	2
	1.3.Parafoil Unmanned Aerial Vehicle	5
	1.4. Terms Used in Powered Parachute Aerial Vehicle	9
	1.5. Aerodynamics of a Powered Parachute Aerial Vehicle	12
	1.6.Thesis Outline	17
2.	Literature Review and Methodology	19
	2.1.Introduction	19
	2.2.Literature Review	19
	2.3. Motivation and Need for Research	29
	2.4.Research Outcome	31
	2.5.Research Focus	32
	2.6.Objectives	32
	2.7.Methodology	32
3.	Experiment Design	36
	3.1.Unmanned Powered Parafoil Aerial vehicle Concept	36
	3.2.Payload Components	36
	3.3.Performance Parameters	39
	3.4.Parafoil Sizing	42
	3.5.Thrust Requirement	45
	3.6.Data Acquisition and Control System	45
	3.7.Hardware Development	49
	3.8.Flight Test Plan	50
4.	Mathematical Modelling	53
	4.1.Parafoil Payload Model	53
	4.2.Coordinate System	56
	4.3.Payload Sub Model	57
	4.4.Payload Forces and Moments	60
	4.5.Parafoil Sub Model	61
	4.6.Parafoil Forces and Moments	63
	4.7.Nine Degrees of Freedom Model	64
	4.8.Rigging Angle Modeling	66
	4.9.Direction Control Modeling	66
	4.10. Apparent Mass terms	67
	4.11. Aerodynamic Model	68
	4.12. Open Loop Simulation Results	69
	4.13. Open Loop Flight Test Results	76
	4.14. Comparison of Simulated Vs Flight Test Results	88

5.	Control System Design and Algorithm	94
	5.1.Guidance Logic	94
	5.2. Algorithm Design for Guidance Law	99
	5.3.Closed Loop Results	104
6.	Conclusion and Future Scope	113
	6.1.Conclusion	113
	6.2. Recommendation for Future Work	117
	6.3. Advantages and Impact of the Developed System	117
	Publications	119
	References	122
	Appendix A. Open loop Flight Test Values	127
	A.1 Take off Flight	127
	A.2 Landing Flight	138
	A.3 Turning Flight	150

EXECUTIVE SUMMARY

Unmanned Aerial Vehicle is an aircraft with no on board pilot. UAVs can be controlled with remote or autonomously. They are used for number of different missions depending upon the application. There are different types of UAVs available like fixed wing, multi copter and Parafoil UAV. Certain characteristics like low speed, high payload carrying capability, etc. makes Parafoil UAV a versatile platform for various applications.

Parafoil is entirely made of fabric and is a non- rigid wing. A Parafoil get inflated just like a parachute when dropped from a height. The wing has a low aspect ratio with an elliptical or a rectangular plan form when inflated. To act as an airfoil, the upper membrane and the lower membrane are sewn together with a gap between both. The leading edge is kept open so as to allow the air inside the cells creating air pressure, which maintains the shape of the Parafoil as a wing. The vents in the ribs allow the air pass from one cell to another which helps in maintaining uniform air pressure in the wing. To avoid the air loss the fabric is made of nonporous material. The suspension lines are used to connect the Parafoil to the payload. Addition of a Propulsion unit on the payload makes the Paraglider a Parafoil UAV. This Vehicle has a "Fly-bar" to which the Parafoil is connected and a motor on the Payload.

Directional control is achieved by pulling the fly-bar either side, which changes the direction of the lift making the aircraft turn. The Powered Parafoil has a tendency to fly at constant airspeed. These systems have pendulum stability and oscillations, because of the mass of the airframe suspended significantly below the canopy, which allows the system to have a yaw motion rather than roll motion. Lateral control is obtained by the propulsion system which is attached to the payload. The thrust of the propulsion system is controlled to maintain the altitude, take-off or landing.

Modeling of Parafoil UAV has been studied in detail in this work. A new direction control scheme was developed using a 9 DOF model with a single servo which is connected to "fly-bar" and tilts the Parafoil left and right. Complete Parafoil payload system performance has been studied by open loop simulation and open loop flight test results. These results are then used to develop a closed loop control system for autonomous way point navigation. The Parafoil UAV has inherent pendulum stability due to which simple controller schemes were designed. A Single servo is used for direction control and a Single BLDC motor is used for takeoff, landing and level flight, due to which, the control system design became simpler.

This work focusses on developing a GPS and Obstacle avoidance based low altitude navigation system for a Parafoil UAV. The vehicle would follow a planned trajectory for following the path effectively. This work presents guidance, navigation and control of a Parafoil UAV. Lateral heading and longitudinal altitude hold controller has been designed. A path planning algorithm is also designed for following a trajectory using way point navigation. The lateral heading and longitudinal altitude hold controllers have been verified by the actual flight parameters.

Parafoil UAV being a low speed UAV can be widely used for remote sensing, aerial surveillance and precision delivery applications. The Aerial photographs taken using this system would be precise and very clear. Such a system with autonomous navigation capability can be used for low altitude remote sensing especially oil and gas pipeline monitoring. A benefit of the Parafoil UAV for unmanned aircraft use is their unique ability to glide to the ground in a relatively safe manner, even if all control systems are disabled. This is particularly desirable in urban environments where a failure of any large UAV would likely result in collateral damage to structure on the ground. Powered Parafoils, on the other

hand, would be unlikely to land with a vertical speed above 10mps, without making severe damage to any ground edifice or even the airframe itself is unlikely.

NOMENCLATURE

- A,B,C = apparent mass terms
- $A^* =$ canopy aspect ratio
- b = canopy span
- d = diameter of a suspension line
- $C_D =$ drag coefficient
- $C_L =$ lift coefficient
- $C_Y =$ side force coefficient
- $C_{lp}, C_{lr} =$ rolling moment damping coefficient
- $C_{mc/4} =$ pitching moment coefficient at quarter chord
- C_{mq} = pitching moment damping coefficient
- $C_{nr}, C_{np} =$ yawing moment damping coefficients
- c = canopy chord length
- F =force
- g = acceleration due to gravity
- h,h* = canopy span wise camber height, and h/c ratio, respectively
- I = inertia matrix
- $I_A, I_B, I_C =$ apparent inertia terms
- M = mass matrix
- L = length of control line pulled
- m = mass
- q(bar) = dynamic pressure
- p,q,r = roll, pitch and yaw rates
- R = link length

LIST OF FIGURES

Figure Name		Page No.
1. Introduction		1
1.1 A I	Multi- Copter UAV	3
1.2 A I	Fixed Wing UAV	4
1.3 A I	Powered Parachute UAV	5
1.4 Pa	a Plane Corporation first model	6
1.5 Co	ntrol Surfaces of Powered Parachute UAV	6
1.6 Alt	ernate steering in Powered parachute	7
1.7 Os	cillations in Powered parachute while takeoff	8
1.8 An	gle of Attack	10
1.9 Aiı	Flow into the Wing	11
1.10	Aerodynamic terms of an Airfoil	11
1.11	Different forces between gliding and level flight	12
1.12	Pendulum Effect	13
1.13	Powered Parachute Stability after backward Wind	14
Gu	st	
1.14	Powered Parachute Stability after Side Wind Gust	14
1.15	Powered Parachute Axes of Rotation	15
1.16	Powered Parachute Loads and Turning Forces	16
2. Litera	ature Review and Methodology	19
2.1 SU	SI 62	24
2.2 Sm	all Scale Powered Parafoil	25
2.3 Fly	ing Eye	25
2.4 Sn	ow Goose	26
2.5 Pac	ek Bot: Griffon	27
2.6 Bu	ckeye PPC	28
3. Expe	riment Design	36
3.1 Ph	vsical Dimensions of the Vehicle	37
3.2 Par	afoil used for UPPAV	39
3.3 Pa	afoil Size to the Parafoil	41
3 4 UPPAV		48
3.5 Ha	rdware model of Powered Parafoil Aerial Vehicle	49
3.6 Ha	rdware model of Powered Parafoil Aerial Vehicle	50
(Gi	ound Station)	
4. Math	ematical Modeling	53
4.1 Fro	ont and Side View of Powered Parafoil Aerial	57
Ve	hicle	
4.2 Pa	load Sub Model of Powered Parafoil Aerial Vehicle	57
·= = ··		

4.3 Parafoil Sub Model of Powered Parafoil Aerial Vehicle 61		
4.4 Direction Control Model 60		
4.5 Parachute Aerial Vehicle Under No Thrust Condition 6		
4.6 Val	idation of Parachute Aerial Vehicle with Lingard	70
mo	del	
4.7 Ga	mma values for various thrust conditions	70
4.8 Par	achute Aerial Vehicle with 7.75N thrust	71
4.9 Alt	itude loss at various thrust and sigma inputs	72
4.10	Xc Vs Zc and Xc Vs Yc Plot with $\delta = 10$ degrees	73
4.11	psi b, psi p Vs Time	73
4.12	Canopy Tilt angle Vs Horizontal Distance Covered	74
4.13	Turn Rate Vs Time	75
4.14	Pitch Variation of PAV during Take Off	76
4.15	Rate of Pitch Variation of PAV during Take Off	76
4.16	Roll Variation of PAV during Take Off	77
4.17	Rate of Roll Variation of PAV during Take Off	77
4.18	PAV Latitude and longitude Positions During	78
Tał	ke-Off.	
4.19	PAV Altitude variation during the takeoff	78
4.20	PAV Ground Speed during Take-Off	79
4.21	Pitch Variation of during Landing	79
4.22	Pitch Rate Variation of during Landing	80
4.23	Roll Variation of PAV during Landing	80
4.24	Roll Rate Variation of PAV during Landing	81
4.25 Latitude and Longitude variation of PAV during		81
Landing		
4.26	Altitude Variation during Landing	82
4.27	4.27 Altitude lost to the horizontal distance covered	
4.28	4.28 PAV Groundspeed during Landing	
4.29	Pitch Variation During PAV Turning Flight	83
4.30	Pitch Rate Variation During PAV Turning Flight	84
4.31	Roll Variation During PAV Turning Flight	84
4.32	Roll Rate Variation During PAV Turning Flight	85
4.33	Latitude, Longitude and Altitude Variation During	
PA	V Turning Flight	86
4.34	Altitude lost to the horizontal distance covered	86
Du	ring PAV Turning Flight	
4.35	Velocity During PAV Turning Flight	87
4.36	Heading Angle During PAV Turning Flight	87
4.37	Angle of Attack Simulated Vs Flight Test	88
4.38	Glide Angle Simulated Vs Flight Test	89
4.39	Pitch Angle Simulated Vs Flight Test	90
4.40	4.40 Comparison of Altitude lost and Horizontal	
Distance Covered, Simulated Vs Flight Test		
4.41	Control Deflection of Fly-Bar	91

	4.42	Fly- Bar Deflection	92
	4.43	Flight Path With The Given Fly-Bar Deflection	92
	4.44	Turn Rate With The Given Fly-Bar Deflection	93
5.	Contro	ol System and Algorithm Design	94
	5.1 Late	eral Heading Controller for Powered Parafoil Aerial	94
	Veh	icle	
	5.2 Lon	gitudinal Hold Altitude Controller for PAV	96
	5.3 Roll	, Pitch and Yaw Axis Stabilizer for Powered	96
	Para	foil Aerial Vehicle	
	5.4 Loit	er and Navigation Control for Powered Parafoil	97
	Aer	ial Vehicle	
	5.5 Alti	tude Hold Control for Powered Parafoil Aerial	97
	Veh	icle	
	5.6 P Tu	uning Roll Rate	104
	5.7 P Tu	uning Roll Angle	105
	5.8 P Tu	uning Yaw Rate	105
	5.9 P Tu	uning Yaw Angle	105
	5.10	P Tuning Pitch Rate	106
	5.11	P Tuning Pitch Angle	106
	5.12	P Tuning Roll Rate, Pitch Rate, Yaw Rate	107
	5.13	P Tuning Roll, Pitch and Yaw Angle	107
	5.14	Servo Tilt for Heading Control	108
	5.15	Heading Control angle tending to zero	108
	5.16	Altitude hold with throttle control at 7.5 N	109
	5.17	Altitude hold at 920 meters	109
	5.18	Autonomous Path Covered 2D	110
	5.19	Autonomous Path Covered 3D	111
	5.20	Autonomous, Semi- Autonomous, Take off,	111
	Lan	ding Path Covered	
6.	Conclu	ision and Future Scope	113
	6.1 Aer	ial Surveillance UPES Dump Area	117

LIST OF TABLES

Table Name	Page No.
1. Introduction	1
1.1 Asymmetric brake deflection	16
2. Literature Review	19
2.1 Comparative Study between various UAS system	20
2.2 Various Autonomous Gliding Parafoils	23
2.3 Powered Parafoil Systems	29
2.4 Comparative Study on different technologies	30
2.5 Methodology	32
3. Experiment Design	36
3.1 Parafoil Payload Relationship	42
3.2 UPPAV Specifications	42
3.3 Electronic Component Specification Used in UPPAV	46
4. Mathematical Modeling	53
4.1 Lateral Derivatives	68
4.2 Powered Parafoil Model validation with Lingard's Model	70
4.3 Gamma values for various thrust conditions	71
4.4 Alpha, beta and gamma values for various thrust conditions	71
4.5 Tilt Angle and Turn Rate values for various cases	74
4.6 Turning Radius Vs Distance Covered (Simulated and Flight Results)	75
4.7 Powered Parafoil Model validation with Lingard's Model	89
4.8 Simulated PAV Model Comparison with Actual Flight Data	89
5. Control System and Algorithm Design	94
5.1 Gain Coefficients for Theoretical and Practical Control	98
APPENDIX A Open Loop Flight Test Values	127
A 1 Take off Flight Values	127
A 2 I anding Flight Values	138
A.3 Turning Flight Values	149

CHAPTER 1

INTRODUCTION

Unmanned Aerial Vehicles commonly known as drones are aircrafts without human pilot on-board. In past the high resolution remote sensing images were taken by manned airplanes or helicopters. But there are some disadvantages, e.g. under special weather conditions (e.g. low clouds) or when airstrip is blocked, the airplanes cannot be used. Technological advances have allowed engineers to develop unmanned aerial vehicles which have an increasing demand in military, remote sensing, surveillance, etc.

1.1 UNMANNED SYSTEMS

The U.S Department of Defense (DOD) defines an unmanned aircraft as follows [1]:

"A powered vehicle that does not carry a human operator, can be operated remotely or autonomously, can be expendable or recoverable and can carry a lethal or non-lethal payload. Ballistic or semi ballistic vehicle, cruise missiles, artillery projectiles, torpedoes, mines, satellites and unattended sensors are not considered unmanned vehicles. Unmanned vehicles are the primary component of unmanned system."

This definition covers multiple forms of unmanned systems including Unmanned Air Systems (UASs), unmanned ground vehicles (UGV), unmanned surface vehicles (USVs), and unmanned underwater vehicles (UUVs).

The definition excludes sensors with no form of propulsion. This exclusion is likely intended to eliminate son buoys and unattended ground sensors (UGS).

Non-powered aircraft, known as gliders, can perform many useful missions and are generally considered to be UAS. They have flight controls which are capable of navigation, and carry payloads. One could argue that a glider's propulsion is the conversion of potential to kinetic energy [2]. UASs have taken many names and forms over their long history can be called in many ways:

- Remotely piloted vehicle
- Unmanned aerial vehicle
- Uninhabited combat aerial vehicle
- Organic aerial vehicle
- Aerial robotics
- Micro aerial vehicle

General attributes of unmanned aircraft are following:

- Smaller size potential
- High versatility
- Greater performance than manned aircraft
- Uninhabited combat aircraft system
- Remotely piloted aircraft
- Remotely piloted helicopter

1.2 TYPES OF UNMANNED AERIAL VEHICLES

A Short Overview of different types of Unmanned Aerial vehicles (UAV) is given. The first remote controlled UAV was developed for military use called drones. UAV generally consist two systems namely, Unmanned Aircraft and Control Station. There is a wide range of UAVs available from small vehicles with less than 0.8kg (e.g. Sensefly) to very large vehicles with the flight weight more than 900kg (e.g. B-Hunter). The different types of UAVs can be classified as: multi-rotor, fixed wing and Parafoil UAV [3].the classification can be done on weight, height and construction

1.2.1 Multi-copter types

Helicopters or multiple copter type UAVs come into this category, which have vertical rotors without any airstrip. The lift is created actively by the whole body which consumes lot of battery having limited flight time and height [4]. Payload constraints are most common in these UAVS.

Figure 1.1. A Multi- Copter UAV [2]

The characteristics of these systems are given below:

- Vertical takeoff and landing (VTOL).
- Equipped with vertical rotor, No runway is needed.
- No dynamic lift is created by wings, the whole lift has to be created actively, which consumes much battery, therefore the flight time and height is limited.
- Heavy payload cannot be carried.
- Need advanced gyro compass and sensors which assist the flight.

1.2.2 Fixed wing types

Figure 1.2. A Fixed Wing UAV [2]

These aircrafts are similar to the traditional aircraft design. Most of the lift is created by the wings leading to long flight time [5]. These UAVs can carry good payload compared to multi copter types

The characteristics of these systems are given below:

- Design similar to classical aircrafts
- Runway is needed for landing
- Dynamic lift created by wing, therefore, long flight time
- Can carry higher payload
- High speed
- Can operate under strong wing conditions
- Advanced autopilots are needed
- High landing speed, therefore slight mistake during landing cause severe damage
- Higher expertise needed to operate compared to multi copter

1.2.3 Parafoil UAV

These type of UAVs are very robust and easy to fly due to the design as Parafoil as the wing and very safe in case of system crash. Due to the low speed, the images taken using this UAV are very clear [6].

Figure 1.3. A Powered Parafoil UAV [2]

The characteristics of these systems are given below:

- Can carry high payloads
- Long flight time
- Low flight speed
- Very robust
- Easy to fly
- Very safe in the case of system failure
- Cannot be operated in rainy conditions sensitive to wind condition

1.3 PARAFOIL UNMANNED AERIAL VEHICLE

The Powered Parafoil is an aircraft which derives lift from a ram-air inflated canopy, under which the fuselage is suspended. The Parafoil is inflated by the dynamic pressure of the air flowing into the canopy which has a cross section in the shape of an airfoil. This process helps the vehicle to create lift. This feature differentiates these Parafoils from conventional Parafoils which are used to simply create drag. Powered Parafoils have been utilized mostly for recreation activities, but some of the special properties make them a suitable platform for unmanned aerial vehicle (UAV) and remote sensing applications. Powered Parafoils have existed since 1981 [7]. The concept was introduced at the Sun & Fun aviation event by the ParaPlane Corporation as seen in figure 1.4.

Figure 1.4. ParaPlane Corporation first model [7]

They represent aircraft that are somewhere between balloons and fixed wing aircraft when control is considered as shown in figure 1.5. The direction of a powered Parafoil is controlled by the pilot rotating on either a left or right steering bar that pulls down a line attached to the trailing edge of the canopy. The increased drag causes the aircraft to turn. The control lines connected to the canopy are pulled down together, which will drop both trailing ends of the canopy at a time and cause a sudden increase in lift.

Figure 1.5. Control Surfaces of Powered Parafoil UAV [8]

This maneuver is done during landing, when the pilot wants a smooth touchdown. A different steering configuration which is used on some small-scale aircraft is known as a "fly-bar." In this design, the Parafoil is connected to the ends of a bar and the bar is tilted, tilting the Parafoil, as seen in figure 1.6.

Figure 1.6. Alternate steering in Powered Parafoil [8]

This bar can be tilted either side of the aircraft, changing the direction of the lift and making the aircraft turn. Aircraft using each of the two steering systems behave identically in response to thrust inputs. Powered Parafoils have the tendency to fly at a constant airspeed [8]. A powered Parafoils will climb, cruise and descend somewhere around the speed of 26 - 32 MPH. These Aircrafts have pendulum stability and oscillations as shown in the figure 1.7, because of the mass of the airframe suspended significantly below the canopy. The applications powered Parafoil in surveillance and imaging has benefit of a low-speed, lowcost, and stable platform which is capable of lifting payloads of up to 600 lbs. These platforms are very stable and must only get disturbed with gusts that would change the flight trajectory.

Figure 1.7. Oscillations in Powered Parafoil while takeoff [8]

The addition of a propelling unit makes the paraglider an Unmanned Aerial Vehicle (UAV). A Powered Parafoil consists of a Parafoil and a payload equipped with an engine or motor and a propeller. From the view of dynamics and control, the configuration provides the following unique characteristics, as compared to traditional wing aircraft [8].

- The separation between the centers of gravity of the canopy and the payload produces a swinging motion.
- Changing the thrust induces a considerable pitching motion.
- Relative pitching and yawing motions exists between the canopy and the payload.
- Canopy is a tailless flying wing.

- Directional control is mainly achieved through yawing motion, rather than through rolling motion.
- The apparent mass of the canopy must be taken into account, as in case of an airship.

1.4 TERMS USED IN POWERED PARAFOIL AERIAL VEHICLE

1.4.1 Airfoil

The Surface of the Parafoil which is used to produce lift, typically, the canopy itself is called as airfoil [9].

1.4.2 Camber

The curvature of the wing is called as camber. A Parafoil has two cambers namely upper camber and lower camber [9].

1.4.3 Leading edge

Leading edge refers to the forward edge of the Parafoil [9].

1.4.4 Trailing edge

Trailing edge refers to the rear edge of the Parafoil [9].

1.4.5 Chord line

Chord line is the imaginary line joining trailing edge and the leading edge [9].

1.4.6 Relative wind

Relative wind is the direction of airflow with respect to the wing, which is generally opposite and parallel to the flight path of the Parafoil [9].

1.4.7 Angle of attack

Angle between the relative wind and the chord line is known as Angle of attack [9].

1.4.8 Longitudinal axis

Longitudinal Axis is the vertical axis of a powered Parafoil Aerial vehicle; it is also called as roll axis [9].

1.4.9 Angle of incidence

Angle between the chord line and the longitudinal axes is known as angle of incidence [9].

1.4.10 Trim angle

Trim angle is the angle between the Chord line and the horizontal plane of the powered Parafoil when the vehicle is in unpowered condition [9].

Figure 1.8. Angle of Attack [9]

1.4.11 Pitch angle

Pitch angle is the angle between wing chord to the horizontal plane [9].

Figure 1.9. Air Flow into the Wing [9]

1.4.12 Aspect ratio

Ratio of wing span by average chord line gives the aspect ratio. More the aspect ratio more will be lift with less induced drag [9].

1.4.13 Wing loading

The total weight the wing can support is known as Wing loading, this can be found by dividing the total weight of the aircraft by the total area of the wing [9].

Figure 1.10. Aerodynamic terms of an Airfoil [9]

1.5 AERODYNAMICS OF A POWERED PARAFOIL AERIAL VEHICLE

1.5.1 Ram Air Parafoil

The powered Parafoil wing retains the rigid shape during the flight because of air pressure. These aircrafts are no different from the conventional aircrafts as both of them have top skin, bottom skin, leading edge and trailing edge. Also they have upper surface curved and lower comparatively flatter. The only difference is fabric and opening in the leading edge. The fabric prevents the air from escaping as it is made of zero porosity material. Once the canopy is filled with air, excess outside air cannot enter the pressurized wing. This results in forming aerodynamically correct and stiff wing

1.5.2 Lift, Weight, Thrust, Drag

Figure 1.12. Different forces for gliding and level flight [9]

In a level and straight flight condition lift is equal to weight and thrust is equal to drag. With the curved upper surface and flat lower surface moves through the air, it forces the air to flow around it resulting in faster air flow on the upper surface and lower airflow at the lower surface. Air travelling with high velocity creates low pressure and low velocity cerates high pressure. Therefore, high pressure at the lower surface generates lift.

Weight is produced by the gravity equal to weight of the instruments on board and the craft's weight.

When lift is greater than weight and thrust is greater than drag the vehicle will climb up. When lift is less than weight and thrust is less than drag, vehicle will descend down. The thrust is produced by the propulsion system attached to the vehicle. Drag is produced by the resistance due to the chute, lines, vehicle and the steering bar.

1.5.3 Throttle Control

Throttle controls the climb and descend of the vehicle by changing the angle of attack of the wind. The rate of climb is controlled by the throttle setting.

1.5.4 Pendulum Stability

Figure 1.13. Pendulum Effect [9]

A pendulum consists of a suspension point with the weight attached to other end. In case of a powered Parafoil vehicle the canopy acts as a suspension point and the vehicle act as the weight. When the weight is moved to and fro it tries to swing to get back to its original stable point. An object is said to be stable when it get backs to its original point after subjected to disturbances. When the controls are released the stable aircraft tries to return back to the level flight. Likewise, whenever a wind gust moves the powered Parafoil due to payload weight it tries to get back to the original position which can be called as natural stability.

1.5.5 Effect of Wind Gusts on Pendulum Stability

A side gust will move the canopy to side first and vehicle will move back to the center due to pendulum stability.

Figure 1.14. Powered Parafoil Stability after backward Wind Gust [9]

Figure 1.14. Powered Parafoil Stability after Side Wind Gust [9]

A gust of wing will move the canopy backward resulting in lift and after some time the vehicle will come back to the center resulting in reduced angle of attack, which tends to descend the vehicle down again the vehicle, will try to relocate to center of the suspension resulting in level flight.

A gust of wing from backside tries to descend the vehicle, but due to the pendulum effect the when vehicle tries to come back to the stable state angle of attack is increased resulting in lift and vehicle centers itself again and level flight is continued.

1.5.6 Axes of movement: Yaw Pitch and Roll

Figure 1.15. Powered Parafoil Axes of Rotation [9]

The Pendulum effect control the longitudinal and lateral or pitch and roll axes, the vehicle must be only programmed to control vertical or yaw axes. To turn the steer bar is pulled down to one of the side. The pitch movement is automatically controlled by the wind gusts. The throttle control can also control pitch moments for climb and descent. This simple control makes the Parafoil easy to fly.

1.5.7 Steering Controls

The steering is accomplished by pulling the control string using the steering bar connected to a servo motor.

Whenever the servomotor is controlled by the pilot one side of the steering bar goes down resulting in pulling the side of the canopy connected to it.

Left String	Right String	Result
Pulled down	No Action	Left Turn
No Action	Pulled down	Right Turn
Pulled Down (less	Pulled Down (less	Lift
angle)	angle)	
Pulled down (high	Pulled Down (high	Descend
angle)	angle)	

Table 1.1. Asymmetric brake deflection

The more the trailing edge deflected the faster will be the turn and shorter the radius more altitude is lost. As the drag increases there is a loss of lift, which can be minimized by increasing the throttle.

1.5.8 The effects of wind direction

Figure 1.16. Powered Parafoil Loads and Turning Forces [9]

The canopy has to be faced towards the wing when on ground called weather vaning which helps in easy takeoff. Ground steering is accomplished by pulling the control strings either left or right. The difference between wind direction and takeoff roll direction will not allow the canopy to take off properly. Therefore the takeoff and landing must be done directly into the wind.

1.6 THESIS OUTLINE

The further organization of thesis is given in the following manner.

Chapter 2 goes with the brief description of literature review, research outcomes, objectives and methodology. The literature review covers two types of systems namely autonomous unpowered Parafoil systems and Powered Parafoil Systems.

Chapter 3 discusses in detail about the experimental design, which deals with the Basic System Performance calculations, structure of the payload, electronic components installed, detailed description of each component, hardware design. The chapter also explains the data acquisition system. The planned flight tests plan is also given in detail.

The mathematical model is discussed in chapter 4. A 9 DOF nonlinear model has been developed and explained in detail. A new control strategy is also discussed which helps in understanding the turn performance, by pulling one side of the Parafoil, this technique would help in understating the radius of turn and turn rate of the system. The tilt mechanism would help in developing the lateral heading direction control system. A thrust vector is also added to the payload. This helps us understating the amount of thrust required for level flight, take off and gliding flight. This helps in designing the longitudinal altitude hold auto pilot design.

Chapter 5 discusses the control system design for a Powered Parafoil Aerial Vehicle. Before the control system design, the vehicle was first stabilized Roll, pitch and yaw later heading controller and longitudinal altitude hold controller was designed. A waypoint algorithm was then designed and burned into the

controller. Two algorithms steer to target and path restoration algorithms are discussed. The controller gains are also calculated. The flight test closed loop results are then plotted.

Chapter 6 deals with the conclusion and future scope.

CHAPTER 2

LITERATURE REVIEW AND METHODOLOGY

2.1 INTRODUCTION

This Chapter deals with the literature review and methodology used. The first half of the chapter deals with the literature review. The review is divided into two parts that is on autonomous unpowered gliding Parafoils and the Powered Parafoil Aerial vehicles. The later section gives the detailed description about methodology used, objectives and the research focus.

2.2 LITERATURE REVIEW

In various designs, the ballistic and Parafoil configurations are more advantageous than other configurations, as they are simple in developing. During the last decade many efforts were made to replace the uncontrolled circular Parachute with maneuverable autonomously guided Ram Air Parafoils that assure more accurate delivery of variety of payloads from high altitudes and standoff distances. Parafoils have proven good in many situations as they are stable and have slow decent rate. This can be more advantageous in surveying as they have long flight duration. Maneuvering is normally achieved by deflecting the trailing edge of the canopy asymmetrically, while some degree of glide slope control is offered with symmetric flap deflection. Dropped from sufficient altitude, a Parafoil controlled vehicle is capable of reaching a much larger area. These attributes offer a great deal of flexibility to precision delivery systems. The rear section housing the arrestor chute for the precision delivery system can be replaced with a module containing the Parafoil and necessary actuators and other components such as computer and avionics would be the same. This setup converts the unpowered Parafoil into a powered Parafoil.
2.1.1 Review on Autonomous Un-Powered Parafoil Systems

UAV systems have proven helpful in delivering payloads as well. For the precise delivery of the payload a sensor network must be established. The advantages and disadvantages of the different types of UAVs are mentioned below [10].

UAV Type	Advantages	Disadvantages
Ballistic	Simplicity	Small glide slope
	Packaging	High impact deceleration
Parafoil	Glide slope	Long flight duration
	Maneuverability	Susceptibility to wind
	Slow descent rate	
Rotorcraft	Slow descent rate	Cost and complexity
Fixed Wing	Maneuverability	Cost and complexity
	Long range	

Table 2.1. Comparison Between Different UAV Systems

These systems are in use, as the Parafoil concept is not the new one. The main functions of these systems are to deliver cargo to remote areas. The navigation subsystem of the guidance, navigation and control on onboard manages data acquisition, processes sensor data and provides guidance and control subsystems with information about Parafoil states. Using this information along with local wind profiles, the guidance subsystem plans the mission and generates the feasible trajectory to the desired landing point. Finally it is responsibility of the control system to track this trajectory using the information provided by the navigation subsystem and on board actuators.

Several approaches are currently being used by different developers for the precise landing.

 Affordable Guided Airdrop System (AGAS) – Capewell Components Co., LLC

- Controlled Aerial Delivery System (CADS) Cobham PLC
- Dragon Train Aerobotics, LLC
- FireFly Airborne Systems North America
- Improved Container Delivery System (ICDS) U.S. Army NSDREC & U.S. Air Force
- Low Cost Aerial Delivery System (LCADS) U.S. Army PM-FSS
- MegaFly Airborne Systems North America
- MicroFly Airborne Systems North America
- Mosquito Stara Technologies, Inc.
- Onyx 300 Atair Aerospace, Inc.
- Onyx Ultra Light (UL) Atair Aerospace, Inc.
- Panther 500 Pioneer Aerospace Corp. / Aerazur
- Panther 2K Pioneer Aerospace Corp. / Aerazur
- 10K Screamer Strong Enterprises
- 2K Screamer Strong Enterprises
- Sherpa 1200/2200 Mist Mobility Integrated Systems Technology (MMIST), Inc.
- Système de Navigation pour Charge Accompagneè (SNCA) NAVOCAP
- SPADES 300 Dutch Space
- SPADES 1000 Dutch Space

The avionics, hardware and the target accuracy of the above systems is given in detail in Table 2.2

Year	Organization	System	Avionics used	Result
2008	US SOCOM [11]	Snow Flake ADS	Three accelerometers, Three rate gyroscopes, a magnetometer,	55m target accuracy

			Global Positioning System Receiver and a Barometric Altimeter, Servo Motor	
2006	German Aerospace Center [12]	ALEX	MEMS accelerometer, Laser altimeter, absolute pressure sensor, temperature sensor, force transducer, rate gyro, 3-axis magnetometer, GPS, Pitot Tube and Camcorder	200m target accuracy
2004	DLR [13]	X-38	Embedded GPS/INS system, Optical Range sensor	Cancelled
2003	Cal poly state university [14]	ATRP	Microcontroller, digital compass, and accelerometer	
1997	US Soldier Systems[15]	GPADS - Light	single board computer, Processor, GPS Receiver, Barometric Pressure Sensor, compass and	250m Accuracy

			a servo actuator	
1994	NASA [16]	Spacew	GPS, rate gyro, and	1600m
		edge	compass and on board	accuracy
			data recorder	

Table 2.2. Various Autonomous Gliding Parafoils

The addition of a power/ propelling unit makes the paraglider an Unmanned Aerial Vehicle (UAV) which can be used for land observation, surveillance etc. such a paraglider is called powered Parafoil system (PPS). A PPS consists of a Parafoil and a suspended payload equipped with an engine or motor and a propeller. From the view of dynamics and control, the configuration of the PPS provides the following unique characteristics, as compared to conventional wing aircraft [17].

- The separation between the centers of gravity of the canopy and the payload produces a swinging motion.
- Changing the thrust induces a considerable pitching motion.
- Relative pitching and yawing motions exists between the canopy and the payload
- Canopy is a tailless flying wing
- Directional control is mainly achieved through rolling motion, rather than through yawing motion.
- The apparent mass of the canopy must be taken into account, as in case of an airship

There are several companies working on these kinds of models using remote control such as:

- Hi-Cam aerial and video systems [18]
- Paralight aviation ltd international [19]

- Sea breeze Parafoils [20]
- Powered Parafoil and sports flying [21]
- Really cool toys

1.6.1 Review on Powered Parafoil Aerial Vehicles

In 2011, Y Ochi and M Watanabe have designed a flight controller for a powered Parafoil system. The author discussed that the powered Parafoil having canopy, payload with a propeller unit is assumed to be having 8dof.

The same year SUSI 62 [16], a Parafoil UAV has been designed for remote sensing. SUSI 62, has a payload of about 8kg and needs a runway of about 50 m. the system is controlled by a remote control.

Figure 2.2. SUSI 62

In the year *2007*, small scale Powered Parafoil in flight has been examined [17]. The results were simulated and modeled in MATLAB.

Figure 2.3. Small Scale Powered Parafoil

In 2005, A Vertical Launch Parafoil Aerial Vehicle –Flying Eye was developed [18] to follow a predetermined flight path using sensors, controllers, mechanical components and software.

Figure 2.4. Flying-Eye Project

In the same year Tommy Ike Hailey described the use of powered Parafoil [19] in Archeological aerial photography. He also worked on the performance, altitude stability, in-flight stability and drift assessment of the vehicle and proved suitable for the aerial photography. The author also discussed the limitations of this vehicle. The author also suggested that Powered Parafoil can be used by agencies responsible for the management of cultural resources for planning site development, monitoring site threats and producing aerial images that will appeal to the public.

In *2004*, A Snowgoose [20], autonomously guided powered Parafoil based UAV that was designed for US Special Operations command. It is meant to be useful for leafleting and resupply operations today. It was designed by Mist Mobility Integrated Systems Technology Inc. (MMIST) of Canada. The developed UAV is a Remote controlled vehicle. It has an unattended ground sensor (UGS). The operator piloted the Parafoil toward the target using a push button on the remote. Later the system was made autonomous by programming the target point.

Figure.2.5. Snowgoose PPC

Papers by Yamauchi and Rudakevych [21], [22] describe the "Griffon" a man portable UAV utilizing the "PackBot" ground-mobile robotics platform and Parafoil wing. The Griffon was developed under phase 1 small business innovation research (SBIR) project. It weighs 57 pounds, and does not fly autonomously; it is remotely piloted. The Parafoil used is an extremely sports traction kite with slight modification. The default angle flight was adjusted, and the kite was converted to a four control-line configuration. The chosen kite was a "Razor", manufactured by ozone, with a wing area 11 square meters. The authors utilized a similar approach to that which will be used in present research. A simplified free-body diagram was given as the starting point for design of the powered Parafoil fuselage. Torques was summed about the center of the gravity and the motor was placed slightly below the Parafoil attachment point, yet well above the center of mass. The aircraft thrust was measured and noted against the RPM, as will be done in current investigation. The tests presented by yamauchi were stated to be for verification of adequate thrust to lift the given payload. The Griffon was flight tested in June 2003, and achieved an altitude of 200 feet and flight speed in excess of 20 miles per hour, with a 2.2 HP engine. The author did state that the Parafoil wing limits the aircraft's usability in windy conditions.

Figure 2.6. Griffon PPC

In *2003*, Bukeye was developed [23]. The X-38/Crew Return Vehicle, a lifting body re-entry vehicle, has been developed as a lifeboat in case of emergency at the international space station. To simulate and verify the performance of the onboard Parafoil, guidance, navigation and control system, a commercial powered Parafoil vehicle, known as Bukeye was modified to accommodate the avionics and reduced scale Parafoil for aerodynamic similarity.

Figure 2.7. Buckeye PPC

The Powered Parafoil Systems developed in the last decade are given in detail in table 2.3.

Year	System	Avionics	Control Surfaces	Operation	Application
			Surfaces		
2011	SUSI 62	Sensors,	Two Servos	Remote	Remote
		Engine,		Control	Sensing
		Servo Motor,			
		Gyroscope			

2005	Flying	Sensors,	Two servos	Remote	Lab
	Eye	controllers,		Control	Instrument
		mechanical			
		components			
2005	Powered	Sensors,	Two servos	Remote	Archeologic
	Parafoil	Engine,		Control	al
		Servo Motor,			Surveillance
		Gyroscope			
2004	Snow	Gyro, Motor,	Two Servos	Remote	US Special
	Goose	Servo Motor,		Control	Operations
		Unattended			
		Ground			
		Sensors			
2004	Griffon	Sensors,	Two Servos	Remote	Surveillance
	Packbot	Engine,		Control	
		Servo Motor,			
		Gyroscope			

Table 2.3. Powered Parafoil Systems

1.7 MOTIVATION AND NEED FOR RESEARCH

Parafoil Aerial Vehicle (PAV) can be used for applications that require accurate vertical positioning which include crop dusting, high resolution and close range imaging, proximity sensing of targets and detection of substances and organisms that are altitude specific. The below table gives the comparative study on various UAVs, and their features motivated to select PAV as a subject of research. The

considered model will be controlled using a single servo and the mathematical modeling will also be done for single servo.

Factor	Multi Copter	Fixed wing	PAV	Selection
Design	Difficult	Difficult	Easy	PAV
/Fabrication				
Complexity				
Aerodynamic	Less	More	More	Multi copter
Efficiency				
Flight time	Less	More	More	PAV
Control over	Difficult	Difficult	Easy	PAV
Handling				
Payload	Fixed	Fixed	Variable	PAV
Capacity				
Autopilot	Advanced	Advanced	Low end	PAV
Wind effect	Less effect	Less effect	More	Fixed wing
			effect	
Transportation	Easy	Difficult	Easy	PAV
of Vehicle				
Crash Impact	More damage	More damage	Less	PAV
			damage	
Runway	Not required	Required	Less	Multi copter
			Required	
Flight Speed	Low speed	High speed	Low	Depends on
			speed	the application
Flight Stability	Less stable	Stable	Highly	PAV
			stable	

Table 2.4: Comparative Study on Different Technologies

Keeping all the factors in view a Parafoil/Parachute aerial vehicle can be considered to be the most stable Aerial vehicle. A benefit of the powered parachute for unmanned aircraft use is their unique ability to glide to the ground in a relatively safe manner, even if all control systems are disabled. This is particularly desirable in urban environments where a failure of any large UAV would likely result in collateral damage to structure on the ground. Powered parachutes, on the other hand, would be unlikely to land with a vertical speed above 10mph, making severe damage to any ground edifice or even the airframe itself is unlikely.

1.8 LITERATURE RESEARCH OUTCOMES

- Various unmanned aerial systems have been analyzed and it has been observed that the Powered Parafoils have many unique capabilities such as high payload carrying capability, low speed, stabilized flight etc. that makes powered Parafoils advantageous compared to that of conventional UAS systems.
- The literature of the powered Parafoils have been studied and determined that, due to the unique structure, the features can be described only by nonlinear model for Parafoil payload coupled system.
- All the developed powered Parafoil system, use asymmetric brake deflection mechanism on either side through two servo motors to achieve yaw control.
- Measurement systems have been determined which can be used to achieve guidance and navigation control.
- The separation between the centers of gravity of the canopy and the payload produces a swinging motion.
- Changing the thrust induces a considerable pitching motion.
- Relative pitching and yawing motions exists between the canopy and the payload.
- Directional control is mainly achieved through yawing motion, apart from rolling motion.

1.9 RESEARCH FOCUS

- A 9 DOF model developed for unpowered Parafoil model has been modified by adding a thrust force vector to the payload to simulate model dynamics under thrust condition.
- The thrust provided will be utilized to increase, decrease and hold the altitude of the vehicle.
- A single servo will be used to control the direction by tilting down the Parafoil to left and right.
- A stability circuit will be developed that will reduce down the oscillations on the vehicle
- Guidance and navigation will be incorporated using way-point navigation technique which loiter and navigate the vehicle
- The mission starts by taking the vehicle to certain height and engaging the autonomous guidance and navigation mode.
- A hardware model will be developed that can be used for various applications.

1.10 OBJECTIVES

The project aims at making an Autonomous Flying Para Drone moving on pre-defined path with obstacle avoidance and path restoration technique.

- To develop a Servo motor based direction control System
- To develop a GPS Based navigation system
- To develop a Ultrasonic sensor based obstacle avoidance system
- Interfacing all the above control systems

1.11 METHODOLOGY

Task	Testing Parameters	Output
Selection of	Easy to glide	Parafoil Aerial Vehicle
UAV	Good Endurance	

	Good Range	
	Moderate Speed	
	Variable payload	
Design	Endurance	Size of the Parafoil according to the
	Range	weight of the Parafoil
	Strength	
	Para foil size	
	Payload calculation	
Selection of	Less weight	Aluminum Alloys, CFRP rods
Material (As	More strength	
per the	Easy to mold	
comparison	High impact strength	
in next table)	Resistance to effect of	
	temperature variation	
	Corrosion resistant	
	Cost	
Fabrication	Structural analysis	Structure of the UAV
	Fabrication of sub -	
	assemblies	
	Assembly	
Power	Variable transmission	2 stroke CI or SI IC Engine
Source	Power output	Li Po Battery
Selection	Light Weight	
	High Torque	
	Less Fuel	
	Consumption	
Modeling	3 dof	Controlling parameters
	6 dof	
	9 dof	

Control	Simulink model	Controlled flight parameters
system		
design		
Servo motor	Decide the angle	Servo motor based direction changing
control	Interfacing Servo with	ground robot
	microcontroller	
GPS	Study of GPS	GPS navigation based ground robot
	Interfacing GPS with	
	Microcontroller	
	Extracting the values	
	using microcontroller	
IMU	Study of IMU	IMU value based direction control
	Interfacing IMU with	ground robot
	Microcontroller	
	Extracting the values	
	using microcontroller	
Ultra Sonic	Study of ultrasonic	Ultrasonic sensor based obstacle
Sensor	Sensor	avoidance ground robot
	Interfacing Ultrasonic	
	sensor with	
	Microcontroller	
	Extracting the values	
	using microcontroller	
Hardware	Interfacing GPS and	Navigation Control
and Software	IMU with controller	
Interfacing	Interfacing Ultrasonic	Obstacle avoidance and Direction
	sensors and motor	control
	controller	
	Interfacing controller	Complete UAV

	and Structure	
Algorithm	Main control loop	Left and right steering using IMU
Design		values
	Steer to target	Steering with IMU and GPS values
	Landing at the target	Using IMU and GPS and Servo
	Obstacle avoidance	Ultrasonic sensor, IMU and GPS
	Full break algorithm	Stop the Parafoil
Testing at	Remote Controlled	Semi-Autonomous
different	UAV	
climatic		
conditions		
	Autonomous	Autonomous

Table 2.5. Methodology developed for proposed PAV

Keeping all the factors in view a Parafoil aerial vehicle is selected. Applications that require accurate vertical positioning include crop dusting, high resolution and close range imaging, proximity sensing of targets and detection of substances and organisms that are altitude specific. A benefit of the powered Parafoil for unmanned aircraft use is their unique ability to glide to the ground in a relatively safe manner, even if all control systems are disabled. This is particularly desirable in urban environments where a failure of any large UAV would likely result in collateral damage to structure on the ground. Powered Parafoils, on the other hand, would be unlikely to land with a vertical speed above 10mph, making severe damage to any ground edifice or even the airframe itself is unlikely.

CHAPTER 3 EXPERIMENT DESIGN

3.1 UNMANNED POWERED PARAFOIL AERIAL VEHICLE CONCEPT

The UPPAV is a concept which consists of a Parafoil and a powered payload. The Parafoil is connected to the payload at two joints using flexible lines. The vehicle is fully stable and requires only two controls, one for direction control and one for take-off and landing. The vehicle has numerous advantages and applications ranging from aerial delivery to remote sensing. The vehicle was developed for remote sensing purpose. The vehicle is a small unmanned powered Parafoil vehicle with payload carrying capability of 2.5 - 4.5 Kg including the electronics, battery and sensors. The vehicle was developed with only two controls. The chapter discusses in detail about the payload concept which includes various parts of the payload, Parafoil Performance which includes the Parafoil size with respect to the payload calculation and the sensors and control unit used in detail. The above mentioned systems are prime requirements to full fill the autonomous remote sensing task.

3.2 PAYLOAD COMPONENTS

The payload generally consists of the following parts

- Nose
- Main frame
- Propeller guard
- Back landing gears
- Front landing gear

- Control rod
- Sensors and control Unit

The above mentioned parts are discussed in detail in this chapter. The sensors and control unit is placed on the payload.

Figure 3.1: Physical Dimensions of the Vehicle

3.2.1 Nose to Main Frame Ratio

The nose is made up of balsa wood. The nose is generally considered to be long compared to the main frame in a ratio of 7:5. The length of the nose is 55cm

It is observed that if the nose is taken short the vehicle tends to stall.

3.2.2 Main Frame

The mainframe is also made up of balsa wood. The mainframe acts as a house for propulsion unit and the control unit. The propulsion system (motor and the propeller) is placed exactly at the center so that the propeller does not touch the surface of the nose when rotating.

3.2.3 Propulsion unit

The propulsion unit consists of an out-runner Brushless DC Motor (BLDC). The motor selection is done by the power calculation. The power required can be calculated by multiplying volts and amps.

- Input watts per pound gives the power requirement based on the weight of the model.
- If the model weight is considered to be x, and power required is 100 watts then then 100x input watts per pound is the minimum power required to achieve the desired performance.
- The input power the motor can handle is determined by Average voltage X continuous current = input watts

Therefore for a 3 kg payload, 6 Cells, Continuous Power Capability: 19.8 Volts (6 x 3.3) x 40 Amps = 792 Watts. The size propeller attached to the model depends on the motor selected.

3.2.4 Propeller Guard

The propeller guard is made of aluminum which is bent in the form of a circle to give protection to the strings. The diameter of the propeller guard is 32cm.

3.2.5 Front and Back Landing Gears

The front landing gear has one wheel and the back landing gear has two wheels giving the shape of a triac. All the wheels are made of balsa wood. Each wheel is of 6cm diameter

3.2.6 Control Rod

The control rod is hinged to the main frame at the center, and is connected to a servo through a push pull rod. The control rod made of an aluminum rod, and is 32cm.

3.2.7 Sensors and Control Unit

The complete set of electronics and the controller used is discussed in detail in the later sections of the chapter (3.6 - Data acquisitions and control system). The toal weight of the sensors system is 20 grams.

3.3 PARAFOIL SIZING

A Ram Air Parafoil comes under the category of NACA Clark Y aero-foil.

3.3.1 Size of the Parafoil

The mass of the payload may range in between 1kg to 8000kg. Change in the weight of the payload increases the size of the parachute [29] The general requirements for calculating the size of the parachute are:

Figure.3.2: Parafoil used for UPPAV

- Payload mass(W)
- Horizontal flight velocity(w)
- Vertical flight velocity(u)

- Lift(L)
- Drag(D)
- Aspect ratio(A)
- Chord length(B)
- Span (B)
- Density(d)

3.3.2 Size

The size of the parachute will be determined by the mass of the payload to be delivered. Therefore the velocity of the parachute is also calculated [29].

The wind specifications set the lower limit on wing loading.

The velocity of the parachute is square root of horizontal flight velocity and vertical flight velocity.

$$v = \sqrt{u^2 - w^2} \tag{3.1}$$

The horizontal flight velocity (w) is calculated by, the L/D is assumed to be 3.

$$w = \frac{u}{L/D}$$
(3.2)

Using these values the size of the parachute is calculated, which is given by:

$$S = \frac{W}{10 \times \sqrt{(C_l^2 + C_d^2) \times (0.5 \times V^2 \times d)}}$$
(3.3)

3.3.3 Cord

The cord of the parachute is calculated using Aspect Ratio and the Surface area of the parachute

$$C = \sqrt{S/A} \tag{3.4}$$

3.3.4 Width

The Width of the parachute is given by multiplying cord and aspect ratio

 $B = C \times A \tag{3.5}$

Figure 3.3: Parafoil Size to the Payload

Since our operation has to be performed using a small Parafoil the following table was again calculated to the approximate size of the Parafoil which should be capable of lifting a payload of maximum 5 Kg, which includes the discussed payload components.

S.No.	Weight (kg)	Span	Chord	Area
	(maximum)	(m)	(m)	(m ²)
1	1	0.84	0.28	0.24
2	2	1.2	0.4	0.48
3	3	1.47	0.5	0.73
4	4	1.68	0.56	0.97
5	5	1.89	0.63	1.2

Table 3.1: Parafoil Payload Relationship

Keeping the Payload components, Parafoil Performance and Parafoil sizing, the Parafoil that was selected is capable of lift 5 Kgs (Maximum), the following is the specification of the vehicle.

Payload mass	3-4 kg (Including electronics)
Cord	0.65m
Span	2m
Area	1.3 m^2
velocity	10 km/h
density	1.22
Aspect Ratio	3

Table 3.2: UPPAV Specifications

3.4 PERFORMANCE PARAMETERS

Performance Parameters include the basic L/D concept and lift and drag coefficient calculation and glide performance.

3.4.1 Parafoil L/D Ratio

The L/D ratio of Parafoil changes according to the angle of attack, thereby getting different L/D ratios at different flight conditions. L/D ratio is also used to determine the drag coefficients it is taken as 3 initially.

3.4.2 Parafoil Lift and Drag Coefficient Calculation

The requirement of lift coefficient acting on UPPAV is determined as following from the estimated flight velocity [11]

$$L = \frac{1}{2} \rho V^2 SC_l \tag{3.6}$$

L=W

$$C_{l} = \frac{2W}{\rho A V^{2}} = 0.5 \tag{3.8}$$

(3.7)

For the drag coefficient, the lift to drag ratio can be determined by the gliding flight

$$C_d = \frac{C_l}{L/D} = 0.16 \tag{3.9}$$

The total drag that is acting on the Parafoil is given as the sums of the parasite drag and drag due to lift.

$$C_{d} = C_{d_{p}} + C_{d_{i}}$$
(3.10)

$$C_{d_i} = \frac{AC_l^2}{\Pi ab^2} = 0.046 \tag{3.11}$$

Parasite drag can be calculated by subtracting the Drag due to the lift from the total drag

$$C_{d_p} = C_d - C_{d_i} = 0.104 \tag{3.12}$$

These estimates suggest that the parasite drag is 50.6 % of the total drag and drag due to the lift is 49.37%.

3.4.3 Payload and Lines Drag Calculation

- Height of the payload = 0.46mX 0.015mX0.05m
- Length of the Payload = 0.55mX 0.015mX0.05m
- Width of the Payload = 0.32mX0.015X0.05m
- Therefor total drag area of the payload $= 0.05 \text{m}^2$

For which the drag coefficient is 0.057, the drag coefficient for the lines comes out to be 0.01.

Therefore the total drag of the vehicle comes out to be $C_d=0.21$.

3.4.4 Lift to Drag Ratio of the Complete System (PAV)

$$E = \frac{C_l}{C_d} = 2.5$$
(3.13)

Where, E is known as the lift to drag ratio.

3.4.5 Gliding Flight Performance of PAV

Velocity of the vehicle during gliding flight is given as

$$V = \sqrt{\frac{2XW}{\rho XSXC_l}} = 10m/s \tag{3.14}$$

Gamma (glide angle) is given by

$$\gamma = -\frac{1}{E} = -0.4 radians = -22 \deg rees \tag{3.15}$$

During the level flight lift to drag ratio is zero, which make glide angle 0.

3.5 THRUST REQUIREMENT

The motor used for the developed UPPAV if E Flite 60 which generates a power of 1200 Watts which comes out to be 1.6 bhp. The motor used is capable of lifting a payload upto 5 Kgs.

Thrust required by UPPAV can be estimated from the following formula [11]

$$T = \frac{VW}{L/DX(motor(bhp))} = 8N$$
(3.16)

3.6 DATA ACQUISITION AND CONTROL SYSTEM

The data acquisition system consist of a micro controller, which monitors airspeed, altitude, location, ground speed, velocity etc.

3.6.1 Inertial Measurement Unit

The IMU used is MPU-600. The device has inbuilt 3-axis accelerometer and a 3axis gyroscope. The device communicates with the microprocessor in SPI mode. The accelerometer has a range of +16g to -16g and gyroscope has a range of +2000deg/sec to -2000deg/sec.

The three steps should be followed to initialize the IMU

- 1. Low pass filter frequency must be set to half of the sample rate.
- 2. The range of the accelerometer and gyro must be set.
- 3. The sample time must match with the sample time of the microprocessor.

3.6.2 Barometric Pressure Sensor

The MEAS Switzerland MS5611 is a small digital device having an inbuilt 24 bit ADC. The chip provides static pressure value that helps in determining the altitude in inches. The sensor works on 75Hz.

3.6.3 Magnetometer

The Honeywell HMC5843 3-axis digital Magnetometer measures the magnetic field strength in each of the three axes. The device communicates with serial bus. As the earth's field strength is very weak, the device is sensitive and has high

resolution. The device is susceptible to the noise due to the noise in the vicinity of the sensor. The engine with induced magnetic field further degrades the quality of the sensor.

3.6.4 GPS

The MediaTek MT3329 10Hz GPS Receiver includes the GPS receiver, processor, and an antenna. The input values are the simulated GPS values.

3.6.5 Pitot Probe

This probe is pitot static probe which is mounted in the forward direction in the triac. The Freescale MPXV7002DP measures the Differential pressure sensor connected to the pitot tube measures the airspeed. Once calibrated, the output is the value of pressure in terms of voltage.

3.6.6 Ultrasonic Sensor

Parallax PING ultrasonic sensor provides an easy method of distance measurement. A single I/O pin is used to trigger an ultrasonic burst (well above human hearing) and then "listen" for the echo return pulse. The sensor measures the time required for the echo return, and returns this value to the microcontroller as a variable-width pulse via the same I/O pin. The following table gives the brief idea about the components used and their specifications.

S.No.	Component	Specification	Usage
1.	BLDC Motor	Eflite 60	Provides throttle, to
		• Equivalent to a 60-size	maintain altitude, take
		glow engine for 6 to 10	off and landing
		lb (2.7 to 4.5 kg)	
		airplanes	
		• 8880 RPM with 22.2V	
		battery	

2.	ESC	100 Amps, Turnigy	Provides PWM signals
		Requires 3-6 cell Li-Po	to BLDC motor, to
		battery	control the speed of the
			motor
3.	Propeller	13X4	Provides thrust of 5.5
			Kg
4.	Battery	• Li-Po	Power supply, up to 20
		• 22.2V	minutes, for continuous
		• 5000 mAh	flying
		• 6 Cell	
5.	Futaba Trans	22.4 GHz	To control the vehicle
	Receiver	• 6 channel	
		• 1 Km Range	
6.	Servo Motor	16 Kg	For direction control
7.	Ardu Pilot	• ATMEGA2560	Controller for auto
		(Arduino Mega)	pilot,
		• Supported telemetry 433	
		MHz	
		• 4 PWM Channels	
		• 4 USART	
		• 10 bit ADC	
8.	Barometric	MEAS Switzerland MS5611	Static Pressure and
	Pressure	• 8 bit ADC	Temperature
	Sensor	• 75 Hz	
9.	Magnetometer	Honeywell HMC5843 3-	Magnetic field in X, Y
		axis digital Magnetometer	and Z direction
		USART Communication	
10.	GPS	MediaTek MT3329 10Hz	Latitude, Longitude,
		GPS Receiver, Includes the	Altitude, Ground

		GPS receiver, processor,	Speed, Time,
		and an antenna	
11.	Pitot Probe	Freescale MPXV7002DP	Dynamic Pressure
12.	IMU	MPU 600	P,q,r (roll rate, pitch
		• 3 axis Accelerometer	rate and yaw rate)
		+2000 deg/s to -2000	
		deg/s	
		• 3 axis gyroscope	
		+16g to -16g	
13.	Ultrasonic	Parallax PING ultrasonic	Distance in meters
	Sensor	sensor	

Table 3.3: Component Specification used in UPPAV

Figure 3.4: UPPAV

The methodology followed for achieving the above mentioned target is to develop embedded system (Hardware Model), Autopilot design and the algorithm design. The hardware model is divided into two parts, which are, onboard embedded system design and ground station design the communication between the onboard embedded system and the ground station is done using 433 MHz Transceiever protocol

3.7 HARDWARE DEVELOPMENT

The development of the control system for autopilot is done to provide artificial stability. The autopilots are capable of maintaining pitch roll and heading angles. These control systems are then coded in the microcontroller using "Embedded C" programming. For the powered parachute aerial vehicle two different autopilots have to design which are, altitude hold autopilot and altitude heading autopilot. For programming these autopilot using Embedded C an algorithm have be designed. A detail description of the on board embedded system, ground station embedded system, altitude hold autopilot, altitude heading autopilot and algorithm design is given.

3.7.1 On board Embedded system

Figure 3.5: Hardware model of Powered Parafoil Aerial Vehicle

The block diagram of transmitting and receiving sections (system with the aerial vehicle and ground station) are given above. The on board Embedded system is

basically placed on the aerial vehicle. The system is interfaced with three sensors GPS, IMU and Ultrasonic sensors. GPS measures the vehicle speed, latitude, longitude and altitude whose values are used to control the vehicle direction also, are transmitted to the ground station using 433 MHz Transmitter Receiver for the operator.

3.7.2 Ground Station

The ground station receives the signal from the onboard embedded system and displays all the sensor information to the user.

Figure 3.6: Hardware model of Powered Parafoil Aerial Vehicle (Ground Station)

3.8 FLIGHT TEST PLAN

The flight tests are planned in two phases. i.e. open loop flight tests and closed loop flight tests to meet the below objectives.

The project aims at making an Autonomous Flying Para Drone moving on predefined path with obstacle avoidance and path restoration technique.

- To develop a Servo motor based direction control System
- To develop a GPS Based navigation system
- To develop a Ultrasonic sensor based obstacle avoidance system
- Interfacing all the above control systems

The following open loop flight tests are planned in the following manner. The UPPAV has inherent static stability; therefore the planned light tests would help in acquiring the precise aerodynamic data.

3.8.1 Open loop flight test plan

• To demonstrate that the flight can be carried out with a single servo

Most of the developed vehicles use two servos to control the direction of the vehicle, but in UPPAV a single servo is used which has advantages in terms of power and control algorithm design

• To check the take off

This test would help us in determining the power required for takeoff, which is generally in full throttle condition.

• To analyze the turn performance

Before the closed loop system is designed, the turn rate, turn radius with respect to the servo tilt must be known. Therefore, the turn performance analysis is done

• Gliding test

This test would help us understand the AOA, Glide angle and pitch angle performance. This test would also help us in estimating the landing distance and throttle condition.

3.8.2 Closed loop Tests

• Attitude Stability

The UPPAV inherently has pendulum stability, due to the turning the vehicle tends to oscillate, these oscillations has to be reduced for precise controller design. The gains of attitude controller is determined using the attitude stability and incorporated in the controller

• Longitudinal Altitude hold controller

The vehicle is taken to a certain height and controller is designed such that the vehicle must maintain the same altitude with the same throttle called level flight. The gains are calculated using the controller and are used in the embedded program to hold the required altitude

• Lateral Heading control

The heading controller is designed to maintain a heading angle for way point navigation. The gains are calculated using the controller and are used in the embedded program to execute the way point navigation algorithm.

The chapter gives the detailed description of the experiment designed to execute the given PhD problem. The few initial topics deal with the UPPAV structure, the relationship between the payload and the Parafoil, which helped us in determining the size of the Parafoil for executing the experiment. The basic aerodynamic parameters of the vehicle are also determined using the basic formulae. The later section deals with the DAQ system used and their specifications. The Output devices used are also discussed in detail. Flight tests are planned to meet the objectives of the PhD work which are given in detail.

CHAPTER 4

MATHEMATICAL MODELLING

4.1 PARAFOIL PAYLOAD MODEL

Parafoil is entirely made of fabric and is a non- rigid wing. A Parafoil get inflated just like a parachute when dripped from a height. The wing has a low aspect ratio with an elliptical or a rectangular plan form when inflated. To act as an airfoil, the upper membrane and the lower membrane are sewn together with a gap between both. The leading edge is kept open so as to allow the air inside the cells creating air pressure, which maintains the shape of the Parafoil as a wing. The vents in the ribs allow the air pass from one cell to another which helps in maintaining uniform air pressure in the wing. To avoid the air loss the fabric is made of nonporous material. The suspension lines are used to connect the Parafoil to the payload.

Directional control is achieved by pulling the fly-bar, which changes the direction of the lift making the aircraft turn. The Powered Parafoil has a tendency to fly at constant airspeed. These systems have pendulum stability and oscillations, because of the mass of the airframe suspended significantly below the canopy, which allows the system to have a yaw motion rather than roll motion. Lateral control is obtained by the canopy itself and the propulsion system attached to the payload [30]. The addition of propulsion system makes the Paraglider an unmanned Aerial vehicle.

The modelling of the Parafoil has been studied in detail. One of the first mathematical model was studied by Goodrick [24]. He developed three degrees of freedom model in 1975 to study longitudinal stability of Parafoil.

Later he developed six degrees of freedom model to study the control in Parafoil [25]. A guidance algorithm was developed using his six degrees of freedom model [26]. Lingard [22] used longitudinal three degrees of freedom dynamic model of Parafoil payload system to study dynamic effects of various system parameters. These equations were derived about the center of gravity of the total system showing longitudinal motion of the system and pitching motion. The model represented Parafoil mass as well as the apparent mass center at canopy quarter-chord, which is an approximation as apparent mass centers located at canopy centroid. This model was used to analyze the effect of changes in canopy size, line length and break deflection, on longitudinal dynamics of the system. There is always a relative motion between Parafoil and payload to introduce additional degrees of freedom this relative motion should be considered. Also, the relative motion should be taken into account as it affects the altitude of the payload on which the propulsion system is attached. The six degrees of freedom model is a single rigid model, where the relative motion between Parafoil and payload is neglected. In 2011, Y Ochi and M Watanabe have described the nonlinear dynamic model using Newtonian mechanics [27]. Body fixed Co-ordinate system are defined for canopy and payload where, six degrees of freedom for canopy and two degrees of freedom for payload. The relative pitch and yawing motions between the canopy and payload are modeled as spring damper system. The internal forces are analytically eliminated. A Six DOF model has been developed by Slegers, N and Nahon, M in 2005, where relative motion between payload and canopy is neglected [28]. Since, the payload on which propulsion and measurement units are placed the relative motion should be taken into account. In early 90's a nine degrees of freedom model was proposed by Doherr and Schilling [29] considering Paraglider as a 2 body system. By constraining to zero the rotation about one or two axes, a seven degrees of freedom and eight degrees of freedom models could be obtained. Mooij et al. [29] used nine degrees of freedom flight dynamic model to develop hardware-in-loop flight simulation environment for the small Parafoil Autonomous Delivery System (SPADES). The ParafoilPayload system was represented by two rigid bodies connected by two rigid bars and a hinge. The hinge was modeled as a damped spring. Slegers and Costello [28], Mooij et al. [29], and Yakimenko [30] applied the concept of coupling of moments between the payload and canopy at the joining. This assumption can be applied as the tension plays a major role at the join. A Powered Parachute as shown in Fig.4 has eight degrees of freedom, where six degrees of freedom of canopy and two degrees of freedom of payload. In eight degrees of freedom model roll approximation is neglected as it is considered to be relatively small Muller et al. [32] considered a non-linear two body eight degrees of [31]. freedom model. He considered six degrees of freedom model for Parafoil and two degrees of freedom model for relative motion of payload. The author defined the tensions at the joint to introduce back turning moment about the yaw axis and modeled the moment as the function of tension of the suspension lines. The internal forces in equation of motion were not defined clearly. A linear model was developed by Aakasaka et al. [33], by removing the third co-ordinate system and assuming the tension for a trimmed flight condition to be constant. A non-linear model was developed by Slegers [34] for the same configuration without eliminating the internal forces. Modeling of powered parachute can also be done by analytical methods. Using Lagrange's equations Wise [35] modeled the dynamics of a small propeller. The UAV and the Parafoil are taken as six degrees of freedom systems and the constraints are coupled with eight degrees of freedom model. A Quasi-Hamiltonaian formulation was developed by Redelinghuys [36] where, eight degrees of freedom equations were derived. Lagrange's derivations were more complex. An accurate model having nine degrees of freedom, modeled as two-body dynamics, consisting of three degrees of freedom for rotational motion of the Parafoil, three degrees of freedom for the rotational motion of the payload and three degrees of freedom for translational motion of the Parafoil [36]. The turning and gliding flight of Parafoil system is analyzed by Prakash et al. [37] subjected to change in left and right brake deflections. This, nine degrees of freedom model incorporates non-linear aerodynamics to predict all kinds of
behavior. The non-linear simulation demonstrates the validity of the proposed model through comparison with the Lingard's data.

4.2 COORDINATE SYSTEMS

Figure 3 shows the coordinate system of the Powered Parafoil Aerial Vehicle used in this study. There are three reference frames called Parafoil Canopy-fixed reference frame (X_p, Y_p, Z_p) , payload body fixed reference frame (X_b, Y_b, Z_b) and Joint C-fixed reference frame (X_c, Y_c, Z_c). The Parafoil Canopy-fixed reference frame has its origin located at canopy center of mass P. The X_p axis points forward, parallel to the canopy chord in the plane of symmetry. The Z_p axis points downward in the system's plane of symmetry. The Y_p axis is normal to the plane of symmetry to form a right-handed axis system. In this reference frame, the canopy mass center has translational velocity $V_p = \{u_p, v_p, w_p\}$, angular velocity $\Omega p = \{p_p, q_p, r_p\},\ and Euler angles (\Phi_p, \theta_p, \psi_p).$ The payload body fixed reference frame has origin located at payload center of mass b. The X_b axis points forward normal to the link R_b . The Z_b axis points downward, parallel to link R_b . The Y_b axis is normal to the X_b and Z_b axes as per right-hand rule. In this reference frame the payload mass center has translational velocity $V_b = \{u_b, v_b, w_b\}$, angular velocity $\Omega_b = \{p_b, q_b, r_b\}$, and Euler angles $(\Phi_b, \theta_b, \psi_b)$. The Joint C-fixed reference frame has its origin located at the joint C. the X_c axis points forward, parallel to each horizontal. The Z_c axis is normal to X_c , axis pointing downward. The Y_c is the axis normal to X_c and Z_c . In this reference frame joint C has translational velocity $V_c = \{ u_c, v_c, w_c \}$. The joint C reaction forces are $Fc = (F_{cx}, v_c, w_c)$. F_{cy} , F_{cz}). The suspension lines of the canopy are connected to the payload at to joints C_L and C_R , where C is the midpoint between C_L and C_R . The derivation of nine degrees of freedom dynamic equations of motion of Parafoil payload system involves separation of system from joint C, and creating the following two sub models such that joint C is exposed to internal forces $F_c = (F_{cx}, F_{cy}, F_{cz})$. In the joint C reference frame.

• Payload sub Model

• Parafoil Sub Model

Figure 4.1: Front and Side view of Powered Parafoil Aerial Vehicle

4.3 PAYLOAD SUB MODEL

Figure 4.2: Payload Sub Model of Powered Parafoil Aerial Vehicle

The payload sub model consisting of payload center of mass connected to joint C through link R_{cb}. The payload is allowed to freely rotate about joint C with the X_b axis pointing forward normal to the link R_b. The Z_b axis points downward, parallel to link R_b. The Y_b axis is normal to the X_b and Z_b axes as per right-hand rule. In this reference frame the payload mass center has translational velocity V_b = {u_b, v_b, w_b }, angular velocity $\Omega_b = {p_b,q_b,r_b}$, and Euler angles (Φ_b,θ_b,ψ_b). The forces acting on the payload center of mass are aerodynamic force F_b^A , Gravitational force F_b^G , internal Joint force F_b^C and Thrust force F_b^T . The internal joint force F_b^C acting at joint C at a distance of $R_{Cb} = {X_{cb}, Y_{cb}, Z_{cb}}$ from payload mass center in joint C reference frame gives rise to moments $R_{Cb} \times F_b^C$ about payload mass center.

Translational equations of motion of payload center of mass in payload body fixed reference frame can be expressed as:

$$M_{b}\dot{V}_{b} + \Omega_{b} \times M_{b}V_{b} = F_{b}^{A} + F_{b}^{G} + F_{b}^{T} - F_{b}^{C}$$
(4.1)

Where,

 V_b, \dot{V}_b : are inertial reference frame quantities:

$$V_{b} = T_{b}V_{C} + \Omega_{b} \times R_{Cb}$$

$$\dot{V}_{b} = \dot{T}_{b}V_{C} + T_{b}\dot{V}_{C} + \dot{\Omega}_{b} \times R_{Cb} + \Omega_{b} \times \dot{R}_{Cb}$$
(4.2)

and M_b is the payload mass matrix:

$$M_{b} = \begin{bmatrix} m_{b} & 0 & 0 \\ 0 & m_{b} & 0 \\ 0 & 0 & m_{b} \end{bmatrix}$$
(4.3)

Matrix T_b is the transformation matrix from an inertial reference frame to the payload reference frame:

$$T_{b} = \begin{bmatrix} C\theta_{b}C\psi_{b} & C\theta_{b}S\psi_{b} & -S\theta_{b} \\ S\phi_{b}S\theta_{b}C\psi_{b} - C\phi_{b}S\psi_{b} & S\phi_{b}S\theta_{b}S\psi_{b} + C\phi_{b}C\psi_{b} & S\phi_{b}C\theta_{b} \\ S\phi_{b}S\theta_{b}C\psi_{b} + S\phi_{b}S\psi_{b} & C\phi_{b}S\theta_{b}S\psi_{b} - S\phi_{b}C\psi_{b} & C\phi_{b}C\theta_{b} \end{bmatrix}$$
(4.4)

 $(\Omega_b \times)$ is a cross-product-equivalent matrix for payload body axis angular velocity:

$$\Omega_{b} \times = \begin{bmatrix} 0 & -r_{b} & q_{b} \\ r_{b} & 0 & -p_{b} \\ -q_{b} & p_{b} & 0 \end{bmatrix}$$
(4.5)

And $(R_{cb} \times)$ is cross product equivalent matrix of components of distance of payload mass center b from joint C in payload body-fixed reference frame:

$$R_{cb} \times = \begin{bmatrix} 0 & -z_{cb} & y_{cb} \\ z_{cb} & 0 & -x_{cb} \\ -y_{cb} & x_{cb} & 0 \end{bmatrix}$$
(4.6)

Here $x_{cb} = 0$, $y_{cb} = 0$ and $z_{cb} = R_{cb}$ due to the choice of the reference frame. The distance between joint C and payload mass center is constant, i.e., $\dot{R}_{cb} = 0$, and $\dot{T}_b = -\Omega_b \times T_b$, hence

$$\dot{V}_b = (-\Omega_b \times T_b)V_c + T_b \dot{V}_c + \dot{\Omega}_b \times R_{cb}$$
(4.7)

Substituting, V_b , \dot{V}_b from equations 4. 2 and 4.7 in 4.1, we get

$$M_b T_b \dot{V}_c + M_b \dot{\Omega}_b \times R_{Cb} + M_b \Omega_b \times \Omega_b \times R_{Cb} = F_b^A + F_b^G + F_b^T - F_b^C$$
(4.8)

The rotational motion of the payload center of mass in payload-fixed reference frame is described by:

$$I_b \dot{\Omega}_b + \Omega_b \times I_b \Omega_b = R_{Cb} \times F_b^C \tag{4.9}$$

4.4 PAYLOAD FORCES AND MOMENTS

The external forces acting on payload sub model are:

• Aerodynamic Force: The aerodynamic drag (C_D^b) force acting at payload mass center in payload reference frame

$$F_{b}^{A} = \overline{q}_{b} S_{b} \begin{cases} C \alpha_{b} C_{D}^{b} \\ 0 \\ S \alpha_{b} C_{D}^{b} \end{cases}$$
(4.10)

Where, $\overline{q}_b = \frac{1}{2}\rho V_b^2$, S_b is payload frontal area and $\alpha_b = \tan^{-1}\left(\frac{w_b}{u_b}\right)$ is the local

angle of attack of payload center of mass.

• Gravitational Force: the gravitational force acting at payload mass center in payload reference frame is

$$F_b^G = m_b g \begin{cases} -S\theta_b \\ S\phi_b C\theta_b \\ C\phi_b C\theta_b \end{cases}$$
(4.11)

Where, g is the acceleration due to gravity

• Joint Force: the internal joint C reaction forces expressed in payload reference are

$$F_{b}^{C} = \begin{bmatrix} C\theta_{b}C\psi_{b} & C\theta_{b}S\psi_{b} & -S\theta_{b} \\ S\phi_{b}S\theta_{b}C\psi_{b} - C\phi_{b}S\psi_{b} & S\phi_{b}S\theta_{b}S\psi_{b} + C\phi_{b}C\psi_{b} & S\phi_{b}C\theta_{b} \\ S\phi_{b}S\theta_{b}C\psi_{b} + S\phi_{b}S\psi_{b} & C\phi_{b}S\theta_{b}S\psi_{b} - S\phi_{b}C\psi_{b} & C\phi_{b}C\theta_{b} \end{bmatrix} \begin{bmatrix} F_{Cx} \\ F_{Cy} \\ F_{Cz} \end{bmatrix}$$
(4.12)

• Thrust force: the force due to the attached propulsion system in X_b direction

$$F_b^T = \begin{bmatrix} Th \\ 0 \\ 0 \end{bmatrix}$$
(4.13)

4.5 PARAFOIL SUB MODEL

Figure 4.3 shows the Parafoil sub model consisting of Parafoil mass center P connected to joint C through link R_p. The Parafoil is allowed to rotate freely about the joint c having translational velocity $V_p = \{u_p, v_p, w_p\}$, angular velocity $\Omega_p = \{p_p, q_p, r_p\}$, and Euler angles $(\Phi_p, \theta_p, \psi_p)$. The forces acting on the Parafoil center of mass are aerodynamic force F_p^A , Gravitational force F_p^G , and internal Joint force F_p^C acts at joint C.

Figure 4.3: Parafoil Sub Model of Powered Parafoil Aerial Vehicle

Translational motion of payload center of mass in Parafoil-fixed reference frame can be expressed as

$$(M_{p} + M_{F})\dot{V}_{p} + \Omega_{p} \times (M_{p} + M_{F})V_{p} = F_{p}^{A} + F_{p}^{G} - F_{p}^{C}$$
(4.14)

Where,

 V_p , \dot{V}_p are inertial reference frame quantities:

$$V_{p} = T_{p}V_{C} + \Omega_{p} \times R_{Cp}$$

$$\dot{V}_{p} = \dot{T}_{p}V_{C} + T_{p}\dot{V}_{C} + \dot{\Omega}_{p} \times R_{Cp} + \Omega_{p} \times \dot{R}_{Cp}$$
(4.15)

and M_p is the Parafoil mass matrix and M_F is Parafoil Apparent mass:

$$M_{p} = \begin{bmatrix} m_{p} & 0 & 0 \\ 0 & m_{p} & 0 \\ 0 & 0 & m_{p} \end{bmatrix}$$
(4.16)
$$M_{F} = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}$$
(4.17)

Matrix T_p is the transformation matrix from an inertial reference frame to the Parafoil reference frame:

$$T_{p} = \begin{bmatrix} C\theta_{p}C\psi_{p} & C\theta_{p}S\psi_{p} & -S\theta_{p} \\ S\phi_{p}S\theta_{p}C\psi_{p} - C\phi_{p}S\psi_{p} & S\phi_{p}S\theta_{p}S\psi_{p} + C\phi_{p}C\psi_{p} & S\phi_{p}C\theta_{p} \\ S\phi_{p}S\theta_{p}C\psi_{p} + S\phi_{p}S\psi_{p} & C\phi_{p}S\theta_{p}S\psi_{p} - S\phi_{p}C\psi_{p} & C\phi_{p}C\theta_{p} \end{bmatrix}$$
(4.18)

 $(\Omega_p \times)$ is a cross-product-equivalent matrix for Parafoil body axis angular velocity:

$$\Omega_{p} \times = \begin{bmatrix} 0 & -r_{p} & q_{p} \\ r_{p} & 0 & -p_{p} \\ -q_{p} & p_{p} & 0 \end{bmatrix}$$
(4.19)

And $(R_{cp} \times)$ is cross product equivalent matrix of components of distance of Parafoil mass center b from joint C in Parafoil body-fixed reference frame:

$$R_{cp} \times = \begin{bmatrix} 0 & -z_{cp} & y_{cp} \\ z_{cp} & 0 & -x_{cp} \\ -y_{cp} & x_{cp} & 0 \end{bmatrix}$$
(4.20)

The distance between joint C and payload mass center is constant, i.e., $\dot{R}_{cp} = 0$, and $\dot{T}_p = -\Omega_p \times T_p$, hence

$$\dot{V}_p = (-\Omega_p \times T_p)V_C + T_p \dot{V}_C + \dot{\Omega}_p \times R_{Cp}$$
(4.21)

Substituting V_p , \dot{V}_p from equations 4.15 and 4.21 in 4.14, we get

$$(M_p + M_F)T_p\dot{V}_c + (M_p + M_F)\dot{\Omega}_p \times R_{Cp} - M_F\Omega_b \times T_pV_C + \Omega_p \times M_FT_pV_C$$

+ $\Omega_p \times (M_p + M_F)\Omega_p \times R_{Cp} = F_p^A + F_p^G - F_p^C$ (4.22)

The rotational motion of the Parafoil center of mass in Parafoil-fixed reference frame is described by:

$$I_p \dot{\Omega}_p + \Omega_p \times I_p \Omega_p = M_p - R_{Cp} \times F_p^C$$
(4.23)

4.6 PARAFOIL FORCES AND MOMENTS

The external forces acting on Parafoil sub model are:

• Aerodynamic Force: The aerodynamic forces acting at Parafoil mass center in payload reference frame

$$F_{p}^{A} = \overline{q}_{p} S_{p} \begin{cases} C_{X} \\ C_{Y} \\ C_{Z} \end{cases}$$

$$(4.24)$$

Where,
$$\overline{q}_p = \frac{1}{2}\rho V_p^2$$
, S_p is Parafoil surface area and $\alpha_p = \tan^{-1}\left(\frac{w_p}{u_p}\right)$ is the local

angle of attack of payload center of mass and C_X, C_Y, C_Z are components of aerodynamic force in Parafoil – fixed reference frame.

• Gravitational Force: the gravitational force acting at Parafoil mass center in Parafoil reference frame is

$$F_{p}^{G} = m_{p}g \begin{cases} -S\theta_{p} \\ S\phi_{p}C\theta_{p} \\ C\phi_{p}C\theta_{p} \end{cases}$$

$$(4.25)$$

Where, g is the acceleration due to gravity

• Joint Force: the internal joint C reaction forces expressed in payload reference are

$$F_{p}^{C} = \begin{bmatrix} C\theta_{p}C\psi_{p} & C\theta_{p}S\psi_{p} & -S\theta_{p} \\ S\phi_{p}S\theta_{p}C\psi_{p} - C\phi_{p}S\psi_{p} & S\phi_{p}S\theta_{p}S\psi_{p} + C\phi_{p}C\psi_{p} & S\phi_{p}C\theta_{p} \\ S\phi_{p}S\theta_{p}C\psi_{p} + S\phi_{p}S\psi_{p} & C\phi_{p}S\theta_{p}S\psi_{p} - S\phi_{p}C\psi_{p} & C\phi_{p}C\theta_{p} \\ \end{bmatrix} \begin{bmatrix} F_{Cx} \\ F_{Cy} \\ F_{Cz} \end{bmatrix}$$
(4.26)

4.7 NINE DEGREES OF FREEDOM MODEL

Collecting Parafoil translational and rotational motion equations, Payload translational and rotational motion equations we get nine degrees of freedom equations of motion of combines Parafoil payload system in concatenated matrix form as:

$$\begin{bmatrix} -M_{b}R_{cb} & 0 & -M_{b}T_{b} & T_{b} \\ 0 & -(M_{p}+M_{F})R_{cp} & -(M_{p}+M_{F})T_{p} & -T_{b} \\ I_{b} & 0 & 0 & -R_{cb}T_{b} \\ 0 & I_{p}+I_{M} & 0 & R_{cp}T_{p} \end{bmatrix} \begin{bmatrix} \cdot \\ \omega_{b} \\ \cdot \\ \omega_{p} \\ V_{c} \\ F_{c} \end{bmatrix} = \begin{bmatrix} B_{1} \\ B_{2} \\ B_{3} \\ B_{4} \end{bmatrix}$$
(4.27)

$$B_{1} = F_{b}^{A} + F_{b}^{G} + F_{b}^{T} - \omega_{b} \times M_{b} \omega_{b} \times R_{cb}$$

$$B_{2} = F_{p}^{A} + F_{p}^{G} - \omega \times (M_{p} + M_{F}) \omega_{p} \times R_{cp} + M_{F} \omega_{p} \times T_{p} V_{c} - \omega_{p} \times M_{F} T_{p} V_{c}$$

$$B_{3} = -\omega_{b} \times I_{b} \omega_{b} - M_{c}$$

$$B_{4} = M_{p}^{A} - \omega_{p} \times (I_{p} + I_{M}) \omega_{p} + M_{c}$$

$$(4.28)$$

Where,

$$M_{c} = \begin{bmatrix} 0 \\ 0 \\ K_{c}(\Psi_{p} - \Psi_{b}) + C_{c}(\dot{\Psi}_{p} - \dot{\Psi}_{b}) \end{bmatrix}$$
(4.29)

$$\Psi_{p} = \tan^{-1}\left(\frac{Sin\Phi_{p}Sin\theta_{p}Cos\Psi_{p} + Cos\Phi_{p}Sin\Psi_{p}}{Cos\theta_{p}Cos\Psi_{p}}\right)$$

$$\Psi_{b} = \tan^{-1}\left(\frac{Sin\Phi_{b}Sin\theta_{b}C\Psi_{b} + Cos\Phi_{b}Sin\Psi_{b}}{Cos\theta_{b}Cos\Psi_{b}}\right)$$
(4.30)

$$\dot{\Psi}_{p} = -Cos\Psi_{p}\tan\theta_{p}p_{p} + Sin\Psi_{p}\tan\theta_{p}q_{p} + r_{p}$$
(4.31)

$$\dot{\Psi}_{b} = -Cos\Psi_{b}\tan\theta_{b}p_{b} + Sin\Psi_{b}\tan\theta_{b}q_{b} + r_{b}$$
(4.32)

$$\tan \theta_{p} = \frac{Cos \Phi_{p} Sin \theta_{p} Cos \Psi_{p} - Sin \Phi_{p} Sin \Psi_{p}}{Cos \theta_{p} Cos \Psi_{p}} Cos \dot{\Psi}_{p}$$
(4.33)

$$\tan \theta_b = \frac{Cos\Phi_b Sin\theta_b Cos\Psi_b - Sin\Phi_b Sin\Psi_b}{Cos\theta_b Cos\Psi_b} Cos\dot{\Psi}_b$$
(4.34)

The rotational stiffness and damping coefficients at joint C is taken as 0.35N.m/rad and 0.25N.m/rad

$$\begin{cases} \dot{x}_{C} \\ \dot{y}_{C} \\ \dot{z}_{C} \end{cases} = \begin{cases} u_{C} \\ v_{C} \\ w_{C} \end{cases}$$
$$\begin{cases} \dot{\psi}_{b} \\ \dot{\theta}_{b} \\ \dot{\theta}_{b} \\ \dot{\psi}_{b} \end{cases} = \begin{bmatrix} 1 & S\phi_{b}t\theta_{b} & C\phi_{b}t\theta_{b} \\ 0 & C\phi_{b} & -S\phi_{b} \\ 0 & \frac{S\phi_{b}}{C\theta_{b}} & \frac{C\phi_{b}}{C\theta_{b}} \end{bmatrix} \begin{cases} p_{b} \\ q_{b} \\ r_{b} \end{cases}$$
$$\begin{cases} \dot{\phi}_{p} \\ \dot{\theta}_{p} \\ \dot{\phi}_{p} \\ \dot{\psi}_{p} \end{cases} = \begin{bmatrix} 1 & S\phi_{p}t\theta_{p} & C\phi_{p}t\theta_{p} \\ 0 & C\phi_{p} & -S\phi_{p} \\ 0 & \frac{S\phi_{p}}{C\theta_{p}} & \frac{C\phi_{p}}{C\theta_{p}} \end{bmatrix} \begin{cases} p_{p} \\ q_{p} \\ r_{p} \end{cases}$$
$$(4.35)$$

Equation 4.27 gives 12 equations of 9 equations of motion and 3 joint force equations. Thus, the 9 equations from equation 4.27, together with kinematic equations 4.27, 4.28 and 4.35 give 21 equations of motion for combined Parafoil

payload system in 18 state variables. The 3 additional equations in equation
4.26 give magnitude of internal forces at joint C.

4.8 RIGGING ANGLE MODELING

As shown in figure 4.4, the rigging angle μ is the angle between the line joining mid-baseline point of the canopy to the joint C and the line parallel to the Z_p axis passing through the mid baseline point. Therefore,

$$Z_{cp} = R_{cp} Cos\mu$$

$$X_{cp} = R_{cp} Sin\mu$$

$$Y_{cp} = 0$$
(4.36)

4.9 DIRECTION CONTROL MODELING

As shown in figure 4.5, the angle δ_s is the angle between the mid-baseline point and the steer bar tilt, this angle is called canopy tilt angle. Therefore,

$$Z_{cp}^{2} = Z_{cp} Cos \delta_{s}$$

$$X_{cp}^{2} = Z_{cp}$$

$$Y_{cp}^{2} = -Z_{cp} Sin \delta_{s}$$
(4.37)

Figure 4.4: Direction Control Model

4.10 APPARENT MASS TERMS

Unlike aircraft, Parafoil-payload is a lightly wing-loaded system. Therefore, apparent mass terms show a strong effect on Parafoil- payload system dynamics. The apparent mass terms show a strong effect on Parafoil-payload system dynamics. The apparent mass (A, B, C) and inertia (Ia, Ib,Ic) terms are estimated from the analytical formulas.

$A = K_A \frac{\pi}{4} t^2 b$	
$B = K_B \frac{\pi}{4} t^2 c$	
$C = K_C \frac{\pi}{4} c^2 b$	(4 38)
$I_A = K_A^* \frac{\pi}{48} c^2 b^3$	(1.50)
$I_B = K_B^* \frac{\pi}{48} c^4 b$	
$I_C = K_{C\backslash}^* \frac{\pi}{48} t^2 b^3$	

Where

$$K_{A} = 0.85(1 + \frac{8}{3}h^{*2})$$

$$K_{B} = 1(Barrows[24])$$

$$K_{C} = [1 + 2h^{*2}(1 - t^{*2})]^{\frac{1}{2}} \frac{A^{*}}{1 + A^{*}}$$

$$K_{A}^{*} = 0.84 \frac{A^{*}}{1 + A^{*}}$$

$$K_{B}^{*} = 1.161 \frac{A^{*}}{1 + A^{*}} [1 + \frac{\pi}{6}(1 + A^{*})A^{*}h^{*2}t^{*2}]$$

$$K_{C}^{*} = 0.855(1 + 8h^{*2})$$
(4.39)

These apparent mass and inertia terms are to be multiplied by local air density ρ . The included mass $m_{pI} = \frac{\rho bct}{2}$ and corresponding inertia of the air inside the canopy are added to respective terms of equation 4.39 to get the final apparent mass and inertia of the Parafoil.

4.11 AERODYNAMIC MODEL

The aerodynamic forces and moments acting at Parafoil canopy mass center are modeled in terms of aerodynamic force and moment coefficients as (the values are extracted from Table 4.1):

$$C_{L} = C_{L}(\alpha_{p}, \delta_{s})$$

$$C_{D}^{p} = C_{D}(\alpha_{p}, \delta_{s})$$

$$C_{Y} = C_{Y\beta} + C_{Y\gamma}r_{p}\frac{b}{2V_{p}}$$
(4.40)

In terms of Parafoil canopy-fixed axis coefficients:

$$C_{X} = (-C_{D}^{p}u_{p} + C_{L}w_{p})/V_{p}$$

$$C_{Y} = C_{Y}$$

$$C_{Z} = (-C_{D}^{p}w_{p} + C_{L}u_{p})/V_{p}$$

$$C_{I} = C_{I\beta}\beta + C_{Ip}p_{p}\frac{b}{2V_{p}} + C_{Ir}r_{p}\frac{b}{2V_{p}}$$

$$C_{m} = \{C_{mc/4}(\alpha_{p}, \delta_{s}) + x_{pa}C_{Z}\} + C_{mq}q_{p}\frac{C}{2V_{p}}$$

$$C_{n} = C_{n\beta}\beta + C_{np}p_{p}\frac{b}{2V_{p}} + C_{nr}r_{p}\frac{b}{2V_{p}}$$
(4.41)

Parameter	Value
CL0	0.45[34]
C _{D0}	0.15[34]
$C_{\gamma\beta}$	-0.0095/deg
$C_{_{Y\gamma}}$	-0.0060/deg
$C_{l\beta}$	-0.0014/deg

C_{lp}	-0.1330
C_{lr}	0.0100
$C_{n\beta}$	0.0005/deg
C_{np}	-0.0130
C_{nr}	-0.0350/deg

Table 4.1. Lateral Derivatives

Since a single servo is used to control the direction of the PAV, the servo angle is represented as δ_s . Since both the ends of the canopy is connected to a "fly-bar" δ_s gives positive and negative values representing left and right turn, as there is no asymmetric brake deflection in our model.

4.12 OPEN LOOP SIMULATION RESULTS

The developed PAV model has been validated using the Lingard model. Angle of attack (alpha), pitch angle (theta) and glide angle (gamma) values obtained (shown in the Figure 4.5) are compared with the Lingard values under no thrust conditions

Figure 4.5. Parachute Aerial Vehicle under no Thrust condition

Figure 4.6. Validation of Parachute Aerial Vehicle with Lingard model

The model is validated using the Lingard results (shown in Figure 4.6) by checking the values of angle of attack (alpha), pitch angle (theta) and glide angle (gamma) of the Parafoil with respect to time. From Table 4.2 it can be observed that the developed 9 DOF model is providing accurate data. The developed 9 DOF simulation model has been simulated at various thrust conditions, keeping the thrust as 4.5N, 7.75N and 10N (Shown in Figure 4.6). It is observed that the gamma value is zero at the thrust input of 7.75N. This indicates that at thrust value 7.75N the vehicle is maintaining a level flight. Table 4.3 also indicates the same.

	Lingard	Parachute Arial vehicle (Thrust = 0N)
Alpha_p (deg)	3	5
Theta_p (deg)	-9	-10
Gamma(deg)	-18	-18

Table 4.2. Powered Parafoil Model validation with Lingard's Model

Figure 4.7. Gamma values for various thrust conditions

S.No.	Thrust (N)	Gamma(deg)
1	4.5	-8
2	7.75	0
3	9	7

Table 4.3. Gamma values for various

thrust conditions

Keeping the thrust value 7.75N the alpha, theta and gamma values are seen in Figure 4.7.

Figure 4.8. Parachute Aerial Vehicle with 7.75N thrust

	Parachute Arial	Parachute Arial	Parachute	
	vehicle	vehicle	Arial vehicle	
	(Thrust = 4.5N)	(Thrust= 7.75N)	(Thrust = 9N)	
Alpha_p (deg)	10	8	7	
Theta_p (deg)	0	8	10	
Gamma(deg)	-8	0	7	

Table 4.4. Alpha, beta and gamma values for various thrust conditions

From the figure 4.8, the theta value can be observed, while landing there is glide angle of approximately 8 degrees.

Figure 4.9, shows that, at 0N thrust the vehicle loses 150ft altitude as it move 450ft forward. Theoretically the L/D ratio of a ram air Parafoil is 3. From this Figure 4.9 the ratio of the altitude lost to the distance covered is 3, which can be validated with the Lingard's L/D value. It can be further concluded that, as the thrust increases the amount of altitude lost decreases. Figure 4.9, further describes that under gliding condition the Parafoil vehicle loses 70 m as it travels 240 m.

Figure 4.9. Altitude loss at various thrust and sigma inputs.

When the thrust is added to the vehicle the vehicle covers a distance up-to 300ft to lose an altitude of 60ft. To land the vehicle with in the glide range one end of the steer bar should be pulled so that the vehicle turns and make spiral landing. Figure 4.9 shows the front view and the top view of the direction control model keeping the canopy tilt angle to be 10 degrees. Keeping the sigma value to be 10 degrees, the Y_c , X_c , plot is as shown in the figure 4.10.

Figure 4.10. X_c Vs Z_c and X_c Vs Y_c Plot with $\delta = 10$ degrees

Figure 4.11.psi_b, psi_p Vs Time

The psi_b and psi_p curve with respect to time is plotted for about 5000 degrees with the sigma value 10 degrees as shown if figure 4.11. It is observed that the payload tends to have certain oscillations but after certain time it tries to re-orient itself when Parafoil yaws during a turn.

C	Tilt	Angle	(Degrees)	Turn	Rate
Cases	δ_{s}			(Degrees/Sec)	
А	+20			20	
В	+10			10	
С	+5			5	
D	+2			2	
Е	-2			-2	
F	-5			-5	
G	-10			-10	
Н	-20			-20	

Table 4.5. Tilt Angle and Turn Rate values for various cases

Figure 4.12. Canopy Tilt angle Vs Horizontal Distance Covered (Simulated and Flight Results)

Figure 4.12 shows the response of the powered Parafoil vehicle with different canopy tilt angles. For positive tilt angle the vehicle turns in the positive Y direction and for negative tilt angle the vehicle moves in the negative Y direction. Figure 4.13 shows the turn rates for various tilt angles under various cases, A, B, C, D, E, F, G, H, I. In the practical flight test the vehicle was responding in the similar manner, i.e. when the servo tilts right the vehicle also moves right and when servo tilts left the vehicle also turns left and the same can be observed in figure 4.13.

S.No	Servo		Simulated	Flight Test Radius (m)
			Radius (m)	
1	Minimum	Servo	25m	18m
	Angle			
2	Maximum	Servo	50m	52m
	Angle			

Table 4.6. Turning Radius Vs Distance Covered (Simulated and Flight Results)

Figure. 4.13. Turn Rate Vs Time

As seen in the figure 4.12, it can be observed that the vehicle took 18m radius to turn with minimum servo turn. Similarly the vehicle took 52 m radius to turn with maximum servo turn.

4.13 OPEN LOOP FLIGHT TEST RESULTS

As discussed in chapter 3, open loop flight tests were done to understand the system behavior. Flight tests were done for take-off, landing and turn performance analysis.

These results would give an insight about the attitude of the Powered Parafoil Aerial Vehicle. Which helped us in interpreting the controller gain values as discussed in chapter 3.

4.13.1 Take-Off Mode

During the take-off mode the pitch angle observed is about 20 degrees. These variations are due to vibration of the motor.

The pitch angle tends to increase indicating that the vehicle tends to climb for 7 seconds. After 7 seconds the PAV tried achieve a level flight decreasing the pitch angle. The rate of pitch also is also maintained about zero. This can be observed in figures 4.14 and 4.15.

Figure 4.16. Roll Variation of PAV During Take Off

The roll variation is about -20 degrees initially. This initial angle is due to the turn as seen in the latitude longitude graph. The variations are due to the vibrations due to the motor attached on the payload. Figure 4.16 and 4.17 replictes the same. The roll rate is also about zero degrees due to the static stability of the vehicle. The oscillation are about +/- 20 degrees.

The vibrations are observed due to the large motor propeller. It can be highlighted that due to the vibrations a variation in the values are observed. The range of the variations tends to be very small. In figure 4.18 it can be observed that the PAV take off and the takes a left turn

Figure 4.18. PAV Latitude and longitude Positions During Take-Off.

Figure 4.19. PAV Altitude variation during the takeoff

Figure 4.18 and 4.19 shows the PAV position with respect to latitude, longitude and altitude. The PAV tends to gain an altitude of 30m in 250ms.

Figure 4.20. PAV Ground Speed during Take-Off

The ground speed remains to be approximately 10m/s during take-off which can be seen in figure 4.20. It can be further observed from figure 4.18 and 4.19 that during the take-off flight, while the vehicle is turning it there are less number of oscillations, while the vehicle is climbing up oscillations is more.

4.13.2 Landing

During the landing mode the pitch angle observed is about -2.5 degrees. These variations are due to vibration of the motors. The pitch angle tends to decrease indicating that the vehicle is tending to climb down. The rate of pitch also is also maintained about zero. The same can be seen figure 4.21 and 4.22.

Figure 4.21. Pitch Variation of during Landing

Figure 4.22. Pitch Rate Variation of during Landing

The roll variation is about 11 degrees. The variations are due to the vibrations due to the motor attached on the payload. Figure 4.23 and 4.24 replictes the same.

Figure 4.23. Roll Variation of PAV during Landing

The roll rate is also about zero degrees due to the static stability of the vehicle. The oscillation are about $\pm - 5.7$ degrees.

Figure 4.24.Roll Rate Variation of PAV during Landing

The Yaw Pitch and Roll values are plotted while take off the. The vibrations are observed due to the large motor propeller. A lot of oscillations are found in pitch rate, roll rate and yaw rate during touch down. These oscillations are due to the flare maneuver. Figure 4.25 shows the PAV position with respect to latitude, longitude and altitude.

Figure 4.25. Latitude and Longitude variation of PAV during Landing

Tigure 1.20. Thittade Variation during Dariding

PAV loses an altitude of 40 meters in 20 seconds with a minimum thrust provided as seen in figure 4.26.

Figure 4.27. Altitude lost to the horizontal distance covered

In figure 4.27 the gamma angle tends to be 8.5 degrees which can be seen by horizontal distance covered to the altitude lost graph

The ground speed value of the vehicle remains to be 10 m/s, as discussed in chapter 3; theoretically the velocity of the vehicle tends to be in 10m/s, as seen figure 4.28.

Figure 4.28. PAV Groundspeed during Landing

4.13.2 Turn Flight

During the take-off mode the pitch angle observed is about zero degrees. The variation in roll is about zero degrees which is very less.

Figure 4.29. Pitch Variation During PAV Turning Flight

These variations are due to vibration of the motors. The pitch angle tends to be around zero indicating that the vehicle tends to maintain level flight. The rate of

pitch also is also maintained about zero. The same can be seen figure 4.29 and 4.30.

The roll variation is about zero degrees which is again negligible. The variations are due to the vibrations due to the motor attached on the payload. Figure 4.31 and 4.32 replictes the same.

Figure 4.31. Roll Variation During PAV Turning Flight

The roll rate is also about zero degrees due to the static stability of the vehicle. The oscillation are about zero degrees which again very low. It can be observed from figure 4.31 that during the turn (from 14 seconds to 19 seconds) there was a cnage in roll angle of about 10 degrees due to the turn.

Figure 4.32. Roll Rate Variation During PAV Turning Flight

Figure 4.33 shows the PAV position with respect to latitude, longitude and altitude. There is no altitude change and the vehicle is maintaining a turn rate of 18 deg/s.

Figure 4.33. Latitude, Longitude and Altitude Variation During PAV Turning Flight

Figure 4.34 shows that the glide angle for the level flight is 0. When seen from altitude lost with respect to the horizontal distance covered. Since the PAV is in level flight as discussed in the open loop simulation result the glide angle is zero.

Analytically, as discussed in chapter 3, the velocity is 10 m/sec using the empirical formula, It can also be seen from figure 4.35 that the PAV maintains a velocity of 10 m/s for level flight and during the turn the velocity goes up to 12 m/s. and the vehicle tends to loose the altitude which is then covered up by increasing the speed to 12 m/s.

Figure 4.34. Altitude lost to the horizontal distance covered During PAV Turning Flight

Figure 4.36. Heading Angle During PAV Turning Flight

From the figure 4.36, in the heading angle graph, it can be observed that the PAV is taking turn from 14 seconds to 19 seconds, at the turn rate of 18 deg/s with a bank angle of 10 degrees. It can also be observed that the vehicle took a smooth turn in figure 4.36. All the observations in this section are done on Payload. A lot of oscillations/ vibrations are seen in the graphs as the sensors are placed on the Payload. The vibrations on the Parafoil would be comparatively lesser. Pitch angle, Glide Angle, heading angle, latitude, longitude, altitude and ground speed

give the performance analysis of the complete system. The above mentioned graphs would help us in understanding the Parafoil performance.

4.14 COMPARISON OF SIMULATED VS FLIGHT RESULTS

The results are classified in two categories. The first part of the results shows the validation of the developed simulation results with Lingard and Flight test results during the unpowered glide condition and the second part shows the direction control using a single servo, which will help us in understanding the servo tilt and turn condition of the Parafoil.

4.14.2 Pitch angle, Glide angle and Angle of Attack Results during Unpowered Glide Condition

The developed Powered Parafoil Aerial vehicle model has been validated using the Lingard model. Angle of attack (alpha), pitch angle (theta) and glide angle (gamma) values obtained are compared with the Lingard values under no thrust conditions. The model is validated using the Lingard results by checking the values of angle of attack (alpha), pitch angle (theta) and glide angle (gamma) of the Parafoil with respect to time.

Figur.4.37. Angle of Attack Simulated Vs Flight Test

	Lingard	Simulated Parafoil Arial vehicle no
		thrust condition
Alpha_p (deg)	3	5
Theta_p (deg)	-9	-10
Gamma(deg)	-18	-18

Table 4.7. Powered Parafoil Model validation with Lingard's Model

Figure.4.38. Glide Angle Simulated Vs Flight Test

Keeping the zero thrust value under unpowered condition, the simulated and flight test values of angle of attack (alpha), pitch angle (theta) and glide angle (gamma) of the Parafoil are plotted with respect to time. The same can be observed in figures 4.37 through 4.39. It can be observed from figure 4.38 that the glide angle gamma replicates the Parafoil condition. The actual and flight test data approximately match the same.

	Simulated Results of Parafoil	Flight Test results of
	Arial vehicle with zero thrust	Parafoil aerial vehicle
	condition	under zero thrust
Alpha_p (deg)	12	13
Theta_p (deg)	-5	-5
Gamma(deg)	-18	-17

Table 4.8. Simulated Powered Parafoil Model Comparison with Flight Test data

In the figure 4.39, during the simulation, there tends to be oscillations for a time period of 5 seconds as the system is the dynamic system. The same pattern is observed in flight test but there are internal oscillations due to the pendulum effect of the payload. The same can be treated as phugoid dynamics as in aircraft.

Figure.4.40. Comparison of Altitude lost and Horizontal Distance Covered, Simulated Vs Flight Test

Theoretically the L/D ratio of a ram air Parafoil is 2.5 as discussed in chapter 3. From this Figure 4.38 the ratio of the altitude lost to the distance covered almost remains to be the same in case of the practical and simulation results. As seen in the figure 4.40 there is a sudden drop of height in the flight test result initially after five seconds but it maintains the same glide ratio as that of the simulation in the later stage. The glide rate (gamma) as in the above figure tends to be

following the same manner. The estimated glide rates are used to estimate the lift and drag coefficients needed for the dynamic model. The estimated glide angle is 15 degrees. The PAV covered 12mts distance for a loss of altitude of 10mts.

4.14.3 Direction Control Using a Single Servo

Parafoils are made up of flexible membranes. Therefore, pulling down one side would deflect the Parafoil resulting in a turn. In this model the two ends of the Parafoil is attached to a single control called "Fly-Bar" unlike the conventional systems. Deflection of the fly-bar helps the Parafoil to tilt to one side. The two rotations that can be observed in these kinds of vehicles are yaw and pitch.

Figure 4.41. Control Deflection of Fly-Bar

The figure above (4.41) indicates how the fly-bar works and helps in tilting. It is observed that there was a maximum turn with a tilt of 18 degrees to the right for right turn and 18 degrees to the left. Here the flight test is performed at an altitude 890 m providing a constant thrust of 7.75N indicating the level flight. This test is performed to analyze the turn performance due to the servo tilt.

Figure.4.43. Flight Path with the Given Fly-Bar Deflection

Figure 4.42 shows the servo tilt in positive and negative side going maximum upto +/- 18 degrees. Figure 4.43 shows the change in direction indicating an 'S' turn. The yaw change is also seen in figure 4.44 oscillating between +/- 15 degrees. The experiment was performed for 30 seconds.

Figure.4.44. Turn Rate with the Given Fly-Bar Deflection

CHAPTER 5

CONTROL SYSTEM DESIGN AND ALGORITHM

5.1.GUIDANCE LOGIC

The task of guidance logic is to generate heading and altitude signals that will enable the PAV to follow desired path specified by the sequence of points. For the autonomous flight conducted, the only concern was to maintain the altitude; hence, the guidance logic is only concerned with the heading angle of the vehicle in the horizontal plane. A simple scheme was implemented as depicted in the figure 5, which shows the guidance logic, specified distance to generate heading angle that will direct PAV back to the path between the waypoints.

5.1.1. Lateral Heading controller

The controller has a heading tracking algorithm, which receives the target heading angle from the higher level guidance logic and outputs a control signal to minimize the error between the measured and the target heading [42].

Figure 5.1 Lateral Heading Controller Powered Parafoil Aerial Vehicle

Classical feedback compensation controller was adopted such that the gyroscope output can be used directly. The servo is modeled by simple first order transfer. The servo transfer function is simply

5.1.2. Longitudinal Altitude Controller

The controller has an altitude tracking algorithm, which receives the target altitude from the guidance scheme and outputs throttle signal to minimize the error between measured and the target altitude [42]. A classical proportional, integral and derivative (PID) controller was implemented.

Figure 5.2 Altitude Hold Controller Powered Parafoil Aerial Vehicle

A throttle control regime has been developed. A PID controller has been and is implemented in the cascade configuration scheme. The PID is used to supply the exact signal to be supplied to the motor to eliminate the steady state altitude error. A simple feedback loop has been used to stabilize the PAV. A relationship between thrust and altitude is developed so altitude gained is linearly proportional to the throttle provided. The throttle is allowed to vary from 0 to unity.

5.1.3. Attitude

The attitude of the PAV is controlled by a nested PI->PID loop. Tuning the inner PID loop is essential to good stable flight. The outer PI loop is less sensitive and effects mostly the style of flying desired (fast or slow). The inner PID loop looks

at the desired rate of angular rotation and compares that to the raw gyro output. The difference is feed back into the PID controller and sent to the motor to correct the rotation. This is the heart of both Rate mode, Stabilize mode, and all other modes. It is also the most critical gain to adjust for PAV. The outer PI loop generates the desired rate of angular rotation. The input for this loop can either be user with stick movement, or the stabilizer, which tries to achieve a specific angle.

Figure. 5.3. Roll, Pitch and Yaw Axis Stabilizer for Powered Parafoil Aerial Vehicle

- STABILITY_ P is 1.3 or 1.3° per second rotation for every 1° of error. If you want more or less speed of rotation based on user input, adjust this value.
- STABILITY_I is 0.1, used to overcome imbalance in the PAV. If the PAV is not symmetrical this term will bring the PAV to level. The higher the number the faster the PAV will compensate. Low numbers can have adverse effects by causing a very slow oscillation measured in seconds.
- RATE_ P is the proportional response and the default is 0.2. The PAV will vary quite a bit depending on the weight and thrust of the motor.

5.1.4. PI control for Loiter and Navigation

Loiter and navigation uses the same PID rate controllers. The location error is calculated in centimeters for X (Longitude) and Y (Latitude) which is fed to the controller. The first stage of the controller takes the XY position error and decides how fast the PAV should go to reach the correct location.

Figure.5.4. Loiter and Navigation Control for Powered Parafoil Aerial Vehicle

Now that we have a desired rate, we need to change the copter pitch and roll to give us that rate of travel.

• Parameter: LOITER_LAT_P and LOITER_LON_P are the proportional response and the default is 2.2. PAV will vary quite a bit depending on the weight and thrust of the engines.

5.1.5. PI Control for altitude hold

Figure.5.5. Altitude Hold Control for Powered Parafoil Aerial Vehicle

The altitude error is calculated in centimeters and fed to the controller. The first stage of the controller takes the altitude error and decides how fast the PAV should go to reach the correct altitude.

- Parameter: THR_ALT_P is 4 or 4 m/s for a 1m error. The desired rate maxes out at 1m/s.
- Parameter: THR_ALT_I is used to close the gap between the actual hover throttle and current assumed hover throttle.

PID Rate Control for altitude hold

Now that we have a desired rate, we need to change the thrust to give us that rate.

- Parameter: THR_RATE_P is the proportional response and the default is .35.
 PAV will vary quite a bit depending on the weight and thrust of the motors. The value should be lowered in order to minimize the oscillations
- Parameter: THR_RATE_I is set to 0 by default.
- Parameter: THR_RATE_D is 0.02 by default, but the noise of the Baro sensor can cause issues. If the value is too high bad oscillations are seen.

There was similar study done for simila Parafoil Vehicle by Jack Umenberger et al. [42], the gain values for various two different controls have been compared. Table 5.1. shows the theoretical and flight test gain of the PAV

#	Theoretica	l [42]		Practical Flight Test			
Gain	K _P	KI	KD	K _P	KI	KD	
Attitude	-	-	-	1.3	0	0.0025	
Later Heading	1.8	0	0	2.2	0	0	
Control							
Altitude hold	0.17	0.02	0.01	0.35	0	0.02	
	4.5	-	-	4	-	-	
	(Throttle)			(Throttle)			

 Table 5.1. Gain Values for Theoretical and Practical

5.2.ALGORITHM DESIGN FOR GUIDANCE LAW

The algorithm general takes in the sensors value and a defined path is followed using the sensors data. The algorithm starts with starting data logging of all the sensor information. The received sensor information a path is defined for the aerial vehicle. For achieving the defined path the servo motors are controlled automatically to change the direction and BLDC motor is controlled for holding the vehicle at desired altitude. The guidance logic is developed using way point navigation technique, where the controller gets the latitude, longitude and the altitude values from the GPS. The controller then calculates the heading angle and distance to the next waypoint. If the calculated distance and the angle, determines that the vehicle is within the path, then the controller executes steer to target algorithm. If the vehicle is deviated from the path due to wind or any other problem then the controller executes path deviation algorithm.

5.2.1. Main Control Loop

The guidance logic is developed using way point navigation technique, where the controller gets the latitude, longitude and the altitude values from the GPS. The controller then calculates the heading angle and distance to the next waypoint. If the calculated distance and the angle, determines that the vehicle is within the path, then the controller executes steer to target algorithm. If the vehicle is deviated from the path due to wind or any other problem then the controller executes path deviation algorithm.

100 | Page

5.2.2. Steer to Target Algorithm

During this algorithm the vehicle gets the actual heading from the control loop and the current heading from the GPS and then calculates the deviation error. The deviation error along with the gain is given to the servo with the calculated yaw rate

5.2.3. Path Restoration Algorithm

In this algorithm the controller compares the heading deviation angle with the desired deviation angle, two conditions occur in the case:

5.2.4. Obstacle Avoidance Algorithm

5.3.CLOSED LOOP RESULTS

The control system described in chapter 5 was implemented in the PAV. The PAV was launched under manual control and after reaching an altitude of 100 meters the control was made autonomous and attitude stability was performed.

5.3.1. PID Tuning for Attitude Stability

In figures 5.6 through 5.9 it is observed that initial gain value was considered to be 2.4, and was reduced in steps to 2 and then 1.3. The gain value was set to 1.3 using visual inspection. By visual inspection we could conclude that the roll oscillations were damped down to almost zero. But certainly, there were internal oscillations due to the motor vibrations. Altogether the major oscillations were damped down keeping the proportional gain value to be 1.3.

The Proportional gain effect on roll rate can be clearly observed in figure 5.6. It can be seen that with proportional gain 2.4, the oscillations were there for 5 seconds. With the implementation of gain value to 1.3 the oscillation were reduced down to 3 seconds. Since the Parafoil Aerial Vehicle has a pendulum effect, the attitude is much effected due to the roll moment, whereas, yaw moment and pitch moment has less oscillations. Similar damping of oscillations can be seen in figure 5.7 in Roll angle.

Figure. 5.9. P Tuning Yaw Angle

Proportional gain effect on yaw rate can be seen in figure 5.8. With gain value of 1.3 the oscillations were completely damped down. As stated earlier Yaw moment has very less effect on attitude stability due to pendulum stability, which was discussed in detail in chapter 1. Similar damping effect can be seen in Yaw angle in figure 5.9.

Figure. 5.11. P Tuning Pitch Angle

The effect of proportional tuning on pitch rate can be observed in figure 5.10. The oscillations were damped down to zero having a frequency of less than 1 second. Pitch angle also show similar changed due to the tuning can be seen in figure

5.11. In figure 5.12 it can be observed the effect of proportional gain 1.3 on roll pitch and yaw rates. As discussed due to the pendulum stability the oscillations can be much seen in roll moment. Total effect of tuning gain of 1.3 can be seen in figure 5.13 in angles.

Yaw Rate , Roll Rate and Pitch Rate tuning for (${\rm K}_{\rm p}$ = 1.3)

Figure. 5.13. P Tuning Roll, Pitch, Yaw

Time (s)

-5 L

5.3.2. Closed loop Lateral Heading Controller with P = 2.2

In the above section we have achieved attitude stability and the oscillations were damped down. After the attitude stability, later heading controller was designed for way point navigation and loiter operations according to the steer to target algorithm. According to the algorithm the heading difference angle was supposed to get down to zero degrees, when travelling from one way point to another, keeping the servo value positive or negation according to the way point, indicating a turn. It was observed in the open loop flight test and simulation results that there were not many oscillations in the turning situation. Therefore only a proportional controller was used keeping the gain value to 2.2 to achieve a smooth turn. The same effect can be seen in figure 5.14 to 5.15.

5.3.3. Closed loop Longitudinal Altitude Hold Controller With P (Throttle) = 4 and P = 0.35

Once the heading control was achieved, an altitude hold controller was designed to maintain a certain altitude to complete the waypoint navigation task. The P (Throttle) is used to provide the exact signal to be supplied to the motor to eliminate the steady state altitude error which is kept as 4 to achieve throttle control regime. It can be seen from figure 5.16 that the trottle was maintained at 7.5 N to achieve the altitude of 920 m in order to eccute proper way point navigation.

Figure 5.17. Altitude hold at 920 meters

90

In figure 5.13 it can be seen that due to the throttle hold at 7.5 N, an altitude of approximately 920 m was maintained so that the vehicle can travel to the other way point easily. As discussed in attitude stability a lot of oscillations were observed in take-off mode than in turning flight test. Therefore a PID was implemented keeping the proportional, Integral and derivative coefficients to be 0.35, 0 and 0.02.

A path comprised of four way points was selected to demonstrate the performance of the guidance logic. Each way point have effective radius of 5m. These way points along with the path have been shown in the figure 5.14 and 5.15. Finally, the path shows that the heading angle tracker along with guidance logic provides a reliable means of way point navigation.

Figure. 5.18. Autonomous Path Covered 2D

Figure. 5.19. Autonomous Path Covered 3D

5.3.4. Aerial Distance covered by the Vehicle

The complete flight test was observed in mission planner software. The vehicle was successfully tested at University of Petroleum and Energy Studies, Dehradun, Bidholi Campus. The vehicle covered the above way points in the complete mission

Figure. 5.20. Autonomous, Semi- Autonomous, Take off, Landing Path Covered

The above figure indicates the autonomous mode of the vehicle.

- Red: Semi-Autonomous Mode and take off
- Blue: Autonomous (the vehicle auto stabilizing itself)
- Violet: Guided Mode (covered the given Way Points with altitude hold)
- Green: Total Path (overall path covered)
- Pink: Semi Autonomous and Landing Mode

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1.CONCLUSION

The initial section of the work discussed in detail about the Powered Parafoil Aerial Vehicles, the terms involved and the aerodynamic parameters that should be considered. The section also explains about different types of Unmanned Aerial Vehicles, their features, advantages and disadvantages. Keeping all the factors in view a Parafoil aerial vehicle is considered to be the most stable Aerial vehicle. Applications that require accurate vertical positioning like crop dusting, proximity sensing of targets and detection of substances and organisms that are altitude specific, high resolution and close range imaging can be performed easily using PAV platform. A benefit of the powered Parafoil for unmanned aircraft use is their unique ability to glide to the ground in a relatively safe manner, even if all control systems are disabled. This is particularly desirable in urban environments where a failure of any large UAV would likely result in collateral damage to structure on the ground. Powered Parafoils, on the other hand, would be unlikely to land with a vertical speed above 10m/s, making severe damage to any ground edifice or even the airframe itself is unlikely. As we can observe clearly from the comparison table discussed in chapter 2, PAV emerges as the most appropriate system for deployment in various fields such as oil and gas pipeline monitoring, regional surveying, etc. These systems can be easily automated as they do not need any high end equipment. A low end GPS and IMU can be used which reduces the complexity in programming and hardware development.

The experimental design section of this work shows that the flight test results and the analytical results of the Unmanned Powered Parafoil Aerial Vehicle match within the range. The section also discussed about the construction of the vehicle. The vehicle shape is in the triac from having a nose fitted with the electronics and control unit. A single servo is used for controlling the direction of the UPPAV. And BLDC motor used is used to take off, land and to maintain a level flight. The total weight of the payload is 3.8 kg. The next section gives the relation between size of the Parafoil and the payload weight. For a 4 kg payload the size of the Parafoil is taken as 2X0.65 m Parafoil. The system performance is also calculated where the lift and drag of the system is calculated. The Parafoil flight velocity is determined and turn performance is also determined. Three types of flight tests were performed and the flight test were compared with the analytical results and concluded the vehicle was performing as desired. It can be observed that during the level flight, while the vehicle is turning there are less number of oscillations, while the vehicle is climbing up the oscillations are more.

All the observations in this section are done on Payload. A lot of oscillations/ vibrations are seen in the graphs as the sensors are placed on the Payload. The vibrations on the Parafoil would be comparatively lesser. Pitch angle, Glide Angle, heading angle, latitude, longitude, altitude and ground speed give the performance analysis of the complete system. The above mentioned graphs helped us in understanding the Parafoil performance.

The mathematical modeling section describes the 9 DOF model. A thrust vector is added on the payload to understand the powered Parafoil performance under various thrust conditions. The direction control simulation was done by a single servo connected to the "fly-bar". The control effects are observed by tilting the "fly-bar" left and right indirectly controlling the Parafoil. The angle of attack, glide angle and pitch angle results were compared with the 9 DOF simulated results. The resulting glide angles can be used in the dynamic model for closed loop simulations and controlled flight. The estimated glide rates are used to estimate the lift and drag coefficients needed for the dynamic model. The Control System and algorithm design section provides a comparison of lateral and longitudinal control theoretical results with practical results. The results indicate a small difference as in practical flight tests environmental conditions comes into picture especially wind conditions. Altitude hold using throttle control was successfully tested.

The following conclusions can be further made

- The successful completion of Autonomous Powered Parafoil Aerial Vehicle has produced a prototype capable of autonomous flight. Total flight duration was approximately 10 minutes for a 22.2V, 6000mah battery
- The developed vehicle was successful in carrying a payload of 3 kg with a 2 meter span Parafoil. For a larger payload the Parafoil span must be increased
- The ratio of horizontal base to the vertical base should be maintained 3:2 in order to avoid stall conditions
- The vehicle needs an air strip on 7 meters for a successful take off under zero wing conditions.
- The 9 DOF dynamic model has shown that the Parafoil uses two modes of direction control, skid steering and roll steering. It is observed that the Parafoil changes the direction due to the roll moment.
- The speed of the vehicle is approximately 10 meters/second. The low speed feature would help the vehicle to survey an area more efficiently compared to other conventional models.
- A turn rate of 18 degrees/second was observed when the vehicle takes a turn. It is observed that the PAV maintains a velocity of 10 meters/second for level flight and during the turn the velocity goes up to 12 meters/second, and the vehicle tends to lose the altitude which is then covered up by increasing the speed to 12 meters/second.

- The bank angle is observed to be 10 degrees while the vehicle is taking the turn and the turn indicated to be smooth without any oscillations. The effect of Parafoil deflection due to the canopy tilt is modeled using direction control modeling, which successfully replicates the turn performance.
- The incorporated collision avoidance sensors, GPS, Pressure and remote sensing device with telemetry transmitted the data successfully to the ground station.
- This project has shown that way point navigation has provided means for autonomous navigation.
- The guidance logic developed was able to generate heading and altitude signals, which enabled the PAV to follow desired path specified by the sequence of points.
- During the flight, if the GPS link is lost in the autonomous mode, PAV was rotating around the waypoint maintaining a radius of 2 meters.
- The Parafoil and electronics package was extremely rugged. Flight test landings occurred in muddy fields and hard road tops without sustaining any damage to the Parafoil and the electronics. Similar landings for the conventional fixed wing or rotor craft would have damaged the structure.

6.2. RECOMMENDATIONS FOR FUTURE WORK

- There are number of applications where the PAV would provide a unique capability that is not adequately satisfied by other devices currently available. The PAV is superior in terms of cost, ruggedness/durability, ease of use, portability, time to activate and reusability when compared with the competing technologies in variety of mission scenarios.
- There are number of military uses for developed PAV which include airdrop guidance, battle damage assessment, and communication in the rugged terrain. Civilian application include; an aid in search and rescue efforts, evaluating plant health by farmers and land management workers, and as a communications and observation device for forestry firefighting crews.

6.3.ADVANTAGES

• Aerial Surveillance

The developed prototype was successfully deployed to survey the given area.

Figure 6.1. Aerial Surveillance UPES Dump Area

• Disaster Management

The developed vehicle can be used in the case of a disaster such as floods, earthquakes, and draughts. These vehicles can drop packages safely from a low altitude in the affected areas. • Coastal Area Surveillance

The vehicle can be used effectively for surveillance in coastal areas as parachute as a wing is much appropriate in wind conditions to hover around

• Oil and gas pipeline monitoring

The vehicle has the ability to hover slowly and in a straight line. This feature can be used in tracking a pipeline by giving the coordinates of the pipeline. This can be used to detect the leaks and thefts near and around the pipelines

6.4.IMPACT OF THE DEVELOPED PROJECT

The biggest problem oil and gas industry facing today is the safety and security of the pipelines. The development of the major sectors such as transportation, aviation, tourism is directly related to oil and gas in developing countries. Therefore proper and steady flow should be maintained in pipelines for the wealth and wellbeing of these economic sectors. Pipelines all over are facing various threats like natural hazards such as corrosion, earthquakes, and landslides, criminal actions such as oil theft and terrorist activities. Pipeline is an easy target to the terrorist organizations which can be a direct aim to damage western economics. A pipeline distribution system extends hundreds of miles having sensors, valves, pumps and controllers. With advancement in sensor technology, communication and signal processing in combination with automation, robotics and unmanned aerial vehicles offer powerful tool for detection of defects in pipelines and monitoring the complex pipeline system. According to the U.S. Department of Transportation's Office of Pipeline Safety (OPS), the majority of pipeline incidents are caused by "damage by outside force." Property damages alone for more than 300,000 miles of transmission pipe can cost operators millions of dollars annually.

PUBLICATIONS

Parachute Aerial Vehicle (Current Work)

Journals

✓ Vindhya Devalla, Om Prakash, "Longitudinal and Directional Control Modeling for a Small Powered Parafoil Aerial Vehicle", Aeronautical Journal, (Accepted).

Abstract- The biggest problem oil and gas industry facing today is the safety and security of the pipelines which contributes to the increase in the maintenance cost of pipeline directly affecting the cost of fuel. An unmanned powered parachute aerial vehicle was developed for monitoring the oil and gas pipeline. It is envisioned that the vehicle would follow a planned trajectory to the target, and FLIR based system would be employed for extracting details about pipeline leakages, thefts, internal corrosion, internal waxing, etc. In this paper, a 9DOF parafoil simulation was created in the Matlab/Simulink environment to study the parafoil dynamics and assess the feasibility of the system. Longitudinal dynamics and direction control has been modeled and studied in detail. Thrust, pitch angle, glide angle and angle of attack was studied for the developed model and is validated with Lingards's model.

 ✓ Vindhya Devalla, Om Prakash, "Developments in Powered Parachute Aerial Vehicle: A Review", IEEE Transactions of Aerospace and Electronics System, Volume 29 Issue 11, November 2014. *Abstract-* This paper discusses the recent developments made on powered parachute aerial vehicles over a decade. It reviews various modeling techniques and different parachute aerial vehicles developed for various applications focusing on the instrumentation involved. 9 DOF equations for a powered parachute vehicle are discussed in detail. The paper presents the comparison between various UAVs.

✓ Vindhya Devalla, Om Prakash, "Modelling and Simulation of a Small Powered Parafoil Aerial Vehicle", IEEE Transactions of Aerospace and Electronics System Society, (Under Review)

Abstract - This Article describes the detailed derivation of the modelling of a small powered Parafoil aerial vehicle. In this model the Parafoil is connected to a payload which has a propulsion system attached. The Parafoil is connected to the payload at two joints. It is assumed to have nine degrees of freedom, modeled as two-body dynamics, consisting of three degrees of freedom for rotational motion of the Parafoil, three degrees of freedom for the rotational motion of the payload and three degrees of freedom for translational motion of the Parafoil. The nine degrees of freedom model incorporates nonlinear aerodynamics to predict all kinds of behavior. The nonlinear simulation demonstrates the validity of the proposed model through comparison with the Lingard's data and Flight Tests.

Conferences

- ✓ Vindhya Devalla, Om Prakash "Angle of Attack, Pitch Angle and Glide Angle Modeling at Various Thrust Inputs for a Powered Parachute Aerial Vehicle" in AEDSS, A Doctoral fellows Symposium, held at IIT Kanpur, 2014.
- ✓ Vindhya Devalla, Om Prakash "Development of Position Tracking and Guidance System for Unmanned Powered Parafoil Aerial Vehicle" 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO 2015), 2-4 September 2015 (Accepted)

Awards

- RnD C3 Award for Paper Publication in SCI listed Journals, UPES, RnD, March 2015, Received the award by Prof. C. N. R. Rao, Bharat Ratna, FRS
- Excellent Performance Award in UPES, Communication Meet, 2014, UPES November 2014
- 4th prize in Innovate India 2014, NRDC, DST, UCOST, March 2014, 4th prize in science model competition

Projects

• Received a grant of 6 lakhs from DST- SERB for "Development of Parachute Aerial Vehicle for Oil and Gas Pipeline Monitoring" for a period of 1 year to do the feasibility study

REFERENCES

- Dept. of Defense, Unmanned Systems Road map 2007- 2032, office of Secretary of Defense, Washington D. C., 10 Dec. 2007
- [2] Jay Gundlach, "Design of Unmanned Aircraft Systems, A comprehensive approach" AIAA Education Series
- [3] Hans-peter Thamm, Thomas Ludwig and Christian Reuter, "Design of a Process Model for Unmanned Aerial Systems in Emergencies", Proceeding of the of the International ISCRAM Conference, May 2012
- [4] Inkyu Sa and Peter Corke, "System Identification, Estimation and Control for a Cost Effective Open-Source Quadcopter", IEEE International Conference on Robotics and Automation, 2012
- [5] Mueller, T.J., "Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications", AIAA, Reston, VA, 2001
- [6] Damian Toohey, "Development of Small Parafoil Vehicle for Precision Delivery" Massachusetts Institute of Technology, 2005
- [7] Phil Dietro, "History of Paraplane", Adirondack Chapter Newsletter, EAA Sprit of Aviation, August 2012
- [8] John R. Chambers, "Longitudinal Dynamic Modeling and Control of Powered Parachute", Thesis Report, Department of Mechanical Engineering, Rochester Institute of Technology, New York
- [9] US Department of Transportation, Federal Aviation Administration, Flights Standard Service "Powered Parachute Flying Handbook", Aircraft Technical Book Company, http://www.actechbooks.com, 2007.

- [10] Y Ochi and m Watanabe, "Modeling and Simulation of the Dynamics of a Powered Paraglider", proceedings in IMechE, Vol.225, Part G
- [11] Doherr, K.F. and Schilling, H., "Nine-degree-of- freedom simulation of rotating parachute systems", J. Aircr., 1992.
- [12] Mooij, E., Wijnands, Q. G. J., and Schat, B., "9 dof Parafoil/payload simulator development and validation", Proceedings of AIAA Modeling and Simulation Technologies Conference, Austin, Texas, August 2003.
- [13] Yakimmenko, O. A., "On the Development of a scalable 8- DOF model for a generic parafoil – payload delivery system", proceedings of the AIAA Aerodynamic Decelerator Systems Conference, Munich, Germany, May 2005.
- [14] Aviation, U.S. Department of Transportation Federal. Powered Parachute Flying Handbook. Oklahoma, 2007.
- [15] Mirasky Aviation, "Para-Ceres", California Polytechnic State University, 2008
- [16] H.P Thamm, "SUSI 62 A Roboust and Safe Parachute UAV With Long Flight Time and Good Payload" International Archives of the photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.XXXVIII-1/C22 UAV-g 2011, Conference on Unmanned Aerial Vehicles in Geomatics, Zurich, Switzerland.
- [17] Sema E. Alptekin, Dianne De Turris, Daniel J.Macy, Jon E. Ervin, "Development of a flying Eye: A project-Based learning Experience", Journal of Manufacturing Systems, Vol. 24, issue.no.3, 2005
- [18] Tommy Ike Haily, "The Powered Parachute As An Archeological Aerial Reconnaissance Vehicle", Archeological Prospectation, John wiley & Sons, Ltd., 2005
- [19] Michael A. Kolodny, "Initial Experiment in Using a Powered Parafoil for Employment of Intelligence, Surveillance, and reconnaissance (ISR) Unattended Ground Sensors (UGS)", Army research laboratory, October 2004.

- [20] Yamauchi, B.PackBot: A versatile platform for military robotics. 2004. Orlando, FL, United States: International Society For Optical Engineering, Bellingham, WA 98227-0010, United States.
- [21] Yamauchi, B and P. Rudakevych, Griffon: A man-portable hybrid UGV/UAV. Industrial Robot, 2004. 31(5):p.443-450.
- [22] J.S. Lingards., "Precision Aerial Delivery Seminar, Ram-air Parachute Design", 13th AIAA Aerodynamic Decelerator System Technology Conference, Clearwater Beach, May 1995.
- [23] Y Ochi and M watanabe, "Modelling and Simulation of the Dynamics of a Powered Paraglider", proceedings in IMechE, Vol. 225, Part G: Journal of Aerospace Engineering 2011.
- [24] T.F. Goodrick., Theoretical study of longitudinal stability of high performance gliding air drop systems, AIAA 75-1394 1975.
- [25] Goodrick, T.F., Simulation studies of the flight dynamics of gliding parachute systems, AIAA Paper 1979-0417, 1979.
- [26] Goodrick, T.F., Comparison of Simulation and Experimental data for gliding parachute in dynamic flight, AIAA Paper 1981-1924, 1981.
- [27] Slegers, N. and Costello, M. "Model Predictive Control of a Parafoil and Payload System", J.Guid.Control Dyn., 2005.
- [28] Slegers, N. and Costello, M. "Aspects of control for a Parafoil and Payload System", J.Guid.Control Dyn., 2003.
- [29] Mooij, E., Wijnands, Q. G. J., and Schat, B., "nine degrees of freedom Parafoil/payload simulator development and validation", Proceedings of AIAA Modeling and Simulation Technologies Conference, Austin, Texas, August 2003.
- [30] Yakimmenko, O. A., "On the Development of a scalable 8- DOF model for a generic parafoil – payload delivery system", proceedings of the AIAA Aerodynamic Decelerator Systems Conference, Munich, Germany, May 2005.

- [31] Hur, G.-B. and Valasek, J., "System Identification of a Powered Parafoil Vehicle from flight data", Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Austin, Texas, August 2003.
- [32] Muller, S., Wagner, O., and Sachs, G., "A high fidelity non linear multi-body simulation model for parafoil systems", Proceedings of the AIAA Aerodynamic Decelerator Systems Conference, Monterey, California, May 2003.
- [33] Akasaka, T., Beppu, G., and Azuma, A., "An investigation of the Paraglider's turn mechanism", J. Jpn.Soc.Aeronaut. Space Sci., 1999.
- [34] Slegers, N., "Effects of canopy-payload relative motion on control of autonomous parafoil", J. Guid. Control Dyn., 2010.
- [35] Wise, K., "Dynamics of UAV with parafoil under powered flight", Proceedings of the AIAA Guidance, Navigation and control Conference, Keystone, Colorado,2006.
- [36] Redelinghuys, C. "A Flight Simulation Algorithm for a parafoil suspending an Air Vehicle", J. Guid. Control Dyn, 2007.
- [37] Prakash, O., Ananthkrishnan, N., Modeling and Simulation of nine degrees of freedom Parafoil- Payload system Flight Dynamics, AIAA Atmospheric Flight Mechanics Conference and Exhibit 21-24 August 2006, Keystone, Colorado.
- [38] Slegers.N.Costello.M and Eric. Beyer., Use of variable incidence angle for glide slope control of autonomous Parafoils, Journal of Guidance, control and Dynamics, Vol. 31, No.3, May- June 2008, pp. 585-596
- [39] Oleg A, Yakimenko and Nathan J. Slegers, "Using Direct Methods for Terminal Guidance of Autonomous Aerial Delivery Systems", Proceedings of the European Control Conference, 2009
- [40] Oleg A, Yakimenko, Eugene A. Bourakov, Charles W. Hewgley, Nathan J. Slegers, Red P. Jensen, Andrew B. Robinson, Josh R. Malone, Phil E. Heidt, "Autonomous Aerial Payload Delivery System "Blizzard", 21st AIAA

Aerodynamic Decelerator Systems Technology Conference Seminar 23-26 May 2011, Dublin, Ireland.

- [41] Yakimenko, O. Slegers, N., and Tiaden, R., "Development and testing of the miniature aerial delivery system snowflake," Proceedings of the 20th AIAA Aerodynamic decelerator Systems Technology Conference, seattle, WA, May 4-7, 2009.
- [42] Jack Umenberger, "Guidance Navigation and Control of a Small-Scale Paramotor", Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 2012, Victoria University of Wellington, New Zealand.

APPENDIX A: OPEN LOOP FLIGHT TEST VALUES

A.1 TAKE-OFF FLIGHT

Roll	Pitch(r	Yaw	Rol'	Pitch	Yaw	Time(s	Groun	horizo	alt (m)	Headi
(rad)	ad)	(rad)	Rate (rad/s)	Rate(r ad/sec)	Rate (rad/s))	dspeed (m/s)	ntal (m)		ng (deg)
-	0.5797	-	0.6985	0.4287	-	0.252	9.87	2.4872	857.46	198
0.3358	42	2.7905	7	51	0.1159			4		
-	0.5099	-	-	0.1517	0.0634	1.095	7.49	8.2015	859.81	192
0.4057	43	2.9259	0.1839	88	19			5		
4	0.5176	1	3		0 1373	1 245	7 49	9 3250	861 35	192
0.3881	79	2.9088	83	0.1642	82	1.245	7.47	5	001.55	172
5	0.4072	7		9		1.655	7.2	11.016	0.61.76	104
- 0 3443	0.4073	- 2.9159	- 0.1863	- 0 3611	- 0.5551	1.655	7.2	11.916	861.76	194
3	-	2	3	7	6					
-	0.3495	-	-	-	-	1.655	7.2	11.916	861.76	191
0.4117	03	2.9685	0.5223	0.1597	0.4889					
-	0.3048	-	-	-	-	1.86	7.17	13.336	863.15	189
0.4530	57	2.9898	0.0748	0.2866	0.2340			2		
4	0.1153	-	-	-	-	2.06	7.17	14.770	863	188
0.4049	97	3.0202	0.0139	0.7663	0.7424			2		
8	0.0060	3	3	7	6	2.002	7.14	14.026	862.08	199
- 0.4541	39	3.0711	0.6003	- 0.4436	- 0.6458	2.092	/.14	14.930 88	802.98	100
1		5	1	4	8					
-	-	-	-	-	0.0112	2.152	7.63	16.419 76	864.18	185
8	0.0303 6	2	4	8	12			70		
-	-	-	0.7685	-	0.2714	2.307	7.63	17.602	863.8	183
0.4447 5	0.0375	3.0515	42	0.0991	74			41		
-	-	-	0.4378	-	-	2.477	8.17	20.237	864.45	184
0.3568	0.0560	3.0439	36	0.0842	0.2433			09		
2	4	4		0.4117	4	2 502	8 17	20.441	864.89	185
0.4235	0.0394	3.1019	1.0879	24	0.4942	2.302	0.17	34	004.09	105
1	1	6	9	0.1156	3	0.670	0.72	22.226	0.64.00	104
- 0.5262	- 0.0127	3.1286 24	- 0.3220	0.1156	- 0.2284	2.672	8.73	23.326 56	864.99	184
7	6		2		4			20		
-	-	3.1129	0.9718	-	-	2.707	9.34	25.283	865.67	180
0.4760 9	0.0016	/	08	0.0802	0.1512 9			38		
-	0.0207	3.0773	0.6724	0.2297	-	2.877	9.34	26.871	866.36	178
0.3397	41	4	96	42	0.4849			18		
9 -	0.1596	2.9598	-	0.6054	0.1977	3.082	10.25	31.590	866.06	177
0.4740	52	44	0.0304	12	77			5		
4	0.2249	2 0971	2	0.1714	0.2526	2.12	10.25	22.002	965 05	174
- 0.3607	36	46	5	76	85	5.15	10.23	5	005.85	1/4
-			1	1	1	1	1	1	1	1
------------------	--------------	--------------	------------------	------------------	------------------	-------	-------	--------------	--------	-----
5										
- 0.2297 7	0.2730 5	2.9903 01	0.4636 43	0.4798 34	- 0.2348 3	3.255	11.03	35.902 65	866.72	170
- 0.3056 7	0.3382 02	2.9166 61	- 0.6479 3	0.5774 76	- 0.5075 3	3.387	11.03	37.358 61	867.5	171
- 0.3721 2	0.3806 67	2.8471 88	0.3731 84	0.2600 72	- 0.2433 4	3.482	11.43	39.799 26	866.67	169
- 0.2937 7	0.4002 58	2.8149 46	0.7105 42	0.1632 28	- 0.2425 4	3.7	11.43	42.291	868.68	164
- 0.2944 3	0.4244 28	2.7772 68	- 0.2940 8	0.2318 71	- 0.3444 4	3.732	11.32	42.246 24	868.02	162
- 0.3596	0.4410 22	2.7363 03	- 0.0586 2	0.0139 72	- 0.2968 2	3.837	11.26	43.204 62	869.29	160
- 0.3413 6	0.4539 7	2.6564 97	- 0.0551 6	0.2906 69	- 0.4726 8	4.145	11.26	46.672 7	868.43	157
-0.444	0.4710 72	2.5855 73	- 0.7133 8	0.2172 37	- 0.4317 1	4.32	10.8	46.656	869.76	153
- 0.5228 1	0.4546 57	2.5516 51	- 0.2547 1	- 0.1480 6	- 0.3165 1	4.36	10.05	43.818	869.69	146
- 0.5587 7	0.4327 08	2.5363 03	- 0.3478 2	- 0.1049 6	- 0.2614 3	4.522	10.05	45.446 1	871.13	145
- 0.8321	0.3806 79	2.5449 39	- 0.2137 3	0.2363 93	- 0.4591 1	5.14	10.13	52.068 2	870.41	144
- 0.9485 4	0.3711 83	2.4565 77	- 1.1443 9	0.6506 41	- 0.5195 1	5.172	10.18	52.650 96	871.14	143
- 1.1383 2	0.3665 33	2.3772 57	- 1.2827 4	0.4165 13	- 0.2755 3	5.21	10.11	52.673 1	871.95	138
- 1.2248 1	0.3567 28	2.3466 42	- 0.1434 9	0.1323 66	- 0.1507 6	5.38	10.11	54.391 8	872.25	135
- 1.2128 7	0.3440 6	2.3176 4	0.0986 16	0.2784 3	- 0.3612	5.457	10.72	58.499 04	873.26	133
- 1.2759 1	0.3090 47	2.2375 92	- 0.6657 6	0.6804 39	- 0.6067 7	5.495	11.2	61.544	872.19	130
- 1.3943 7	0.2688 05	2.1198	- 0.5449 7	0.8704 02	- 0.5006 2	5.688	11.2	63.705 6	872.5	124
- 1.4250 9	0.2390 66	2.0139 58	0.3984 6	0.6966 68	- 0.3574 8	5.73	11.25	64.462 5	873.43	118
- 1.3778 6	0.2040 44	1.9196 2	0.6110 38	0.7200 81	- 0.5250 9	5.895	11.25	66.318 75	872.9	112

- 1.4022 7	0.1461 65	1.8051 26	- 0.2552 4	0.7594 57	- 0.6671 7	5.995	11.92	71.460 4	873.89	106
- 1.4466 6	0.0872 19	1.6960 93	0.2321 75	0.7238 06	-0.449	6.173	12.65	78.088 45	874.04	100
- 1.3441	0.0478 23	1.6081 16	1.4328 81	0.6181 82	- 0.4798 6	6.25	12.65	79.062 5	874.82	94
- 1.2460 7	0.0006 17	1.4845 23	0.4003 22	0.8866 32	- 0.7664 1	6.39	12.95	82.750 5	873.46	88
- 1.2467 4	-0.06	1.3642 44	0.3542 95	0.6932 1	- 0.7142 6	6.463	12.95	83.695 85	874.73	81
- 1.1265 8	- 0.0989 8	1.2607 03	1.497	0.7222 1	- 0.5729 8	6.68	13.39	89.445 2	874.26	75
- 0.9963	- 0.1078 1	1.1214 11	0.6416 34	1.0502 55	- 0.6075 7	6.823	13.73	93.679 79	873.92	68
- 0.9912	- 0.0994 8	0.9908 54	0.1728 45	0.8299 62	- 0.3492 3	6.863	13.73	94.228 99	873.63	60
- 0.4970 3	- 0.0170 1	0.7307 46	0.6514 78	0.1847 79	- 0.1728 4	7.66	13.41	102.72 06	873.76	54
- 0.4489 1	- 0.0023 9	0.7062 67	0.1810 93	0.1916 96	- 0.0613 6	7.69	12.94	99.508 6	873.95	42
- 0.4046 1	0.0334 88	0.6914 21	0.4303 86	0.3207 33	0.0793 82	7.71	12.19	93.984 9	875.48	41
- 0.3499 5	0.0859 2	0.6925 74	0.2752 76	0.3789 99	0.2084 19	7.875	12.19	95.996 25	876.12	39
- 0.3032 4	0.1102 44	0.6848 1	0.3862 21	- 0.0746 2	- 0.1403 8	7.925	11.65	92.326 25	874.48	39
- 0.2864 8	0.0532 46	0.6423 28	- 0.1235 4	- 0.5162 8	- 0.6397 6	8.018	11.65	93.409 7	876.15	39
- 0.3364	- 0.0132 2	0.5605 23	- 0.6255 9	- 0.1874 3	- 0.8012 6	8.44	10.93	92.249 2	876.02	38
- 0.3829 2	- 0.0251 2	0.4966 59	- 0.2560 4	0.1964 85	- 0.2215 3	8.473	10.5	88.966 5	876.19	34
- 0.3736 1	0.0166 48	0.4883 39	0.2356 34	0.2483 66	0.3765 66	8.645	10.5	90.772 5	876.74	30
- 0.3352	0.0350 22	0.5343 83	0.1656 62	- 0.2935 9	0.4563 82	8.713	9.77	85.126 01	875.88	27
- 0.4478 2	- 0.1701 6	0.4872 9	- 0.3778 9	- 0.0871 3	- 0.2140 8	9.32	9.77	91.056 4	876.67	29
- 0.5173	- 0.3242	0.4289 78	- 0.3182	- 0.1834	- 0.1760	9.598	9.3899 99	90.125 21	877.23	31

2	1		0	4	2					
3	1		9	4	3					
-	-	0.4513	0.3130	-	0.1863	9.923	8.9	88.314	878.2	24
0.5001	0.3081	08	56	0.1440	37			7		
5	5			7						
-	-	0.4595	-	-	-	9.963	8.9	88.670	878.65	24
0 4867	0 3343	2	0.0820	0 2930	0 2625	11100	0.7	7	0,000	
7	1	-	4	6	0.2025			,		
/	1	0.0316	0 3010	0 2700		10.003	0.17	00 080	870.02	25
-	-	0.0510	0.5010	0.2709	-	10.905	9.17	99.900 51	019.92	23
0.3939	0.2747	10	04	01	0.5205			51		
4	1			0.0040	3	10.071	0.17	100.00	070 74	24
-	-	-	-	0.2342	-	10.9/1	9.17	100.60	8/9.74	26
0.3698	0.2584	0.0183	0.1826	65	0.3409			41		
		4			8					
-	-	-	-	0.2406	-	11.113	10.53	117.01	877.85	6
0.3869	0.2408	0.0661	0.2323	5	0.2135			99		
3	1	3	6		4					
-	-	-	0.1387	0.1972	-	11.318	10.75	121.66	879.81	0
0.3858	0.2171	0.0942	9	83	0.0475			85		
5		2			3					
-	-	-	0.3231	0.2172	-	11.351	10.78	122.36	879.86	357
0.3477	0.1926	0.1182	66	37	0.1057			38		
8	7	5			9					
-	-	-	-	0 3188	_	11 421	10.92	124 71	879.25	355
0 3275	0 1647	0 1560	0.0330	7	0 3098	11.121	10.92	73	017.25	555
4	3	8	8	,	6			15		
-	5	0	0	0.2864	0	11 / 181	10.02	125.37	878 /	353
- 0.2211	- 0.1415	-	-	12	- 0 4772	11.401	10.92	25	070.4	555
0.5511	0.1413	0.2142	0.1094	12	0.4772			25		
1	/	1	4	0.0000		11 771	10.05	100.00	070.07	250
-	-	-	-	0.2206	-	11.//1	10.95	128.89	8/9.8/	352
0.3361	0.1350	0.2824	0.0575	96	0.5216			25		
3	5	9	6		4					
-	-	-	-	0.2680	-	11.936	10.95	130.69	879.53	349
0.3274	0.1234	0.3487	0.0897	54	0.3992			92		
7	6	9	5		5					
-	-	-	-	0.1877	-	11.978	10.78	129.12	879.59	345
0.3598	0.1058	0.3927	0.4523	05	0.1733			28		
5	4	8	8		7					
-	-	-	0.0470	0.2622	0.0626	12.033	10.57	127.18	878.88	341
0.3849	0.0834	0.4139	01	01	21			88		
4	4	6								
-	-	-	0.3965	0.1890	-	12.093	10.57	127.82	879.13	338
0 3455	0.0564	0 4242	97	36	0.0038			3		
4	3	9	<i>,</i> ,	50	9			5		
-	5	-	0.0150	0.0123	-	12 203	10.62	130.55	879.47	336
0 3 2 3 4	0.0534	- 0.4505	75	75	0 3372	12.275	10.02	17	077.47	550
1	5	7	,5	,5	6			1/		
1	5	1		0.0(21	0	10 222	10.62	120.07	070.00	225
-	-	-	-	0.0021	-	12.333	10.62	150.97	0/0.02	555
0.5515	0.0097	0.5205	0.0942	21	0.3020			0.5		
4	/		/	0.1710	1	10,000	10.07	100.00	070.04	22.4
-	-	-	0.2970	0.17/12	-	12.623	10.25	129.38	879.24	334
0.3163	0.0782	0.5886	93	1	0.4705			58		
5	9	5			5					
-	-	-	0.3939	0.1682	-	12.623	10.28	129.76	879.55	332
0.2706	0.0677	0.6450	37	83	0.3056			44		
	8	6								
-	-	-	0.2468	0.0799	-	12.768	10.28	131.25	880.42	328
0.2289	0.0593	0.6869	08	53	0.3029			5		
3	6				4					

-	-	-	0.1760	-	-0.246	12.813	9.88	126.59	879.82	324
0.2141	0.0645	0.7234	38	0.0411				24		
1	7	7								
-	-	-	0 4644	0 1935	-	12,998	946	122.96	879.04	321
0 1745	0.0601	0 7593	41	59	0 2332	12.990	2.10	11	079.01	521
7	2	0.7575	71	57	2			11		
/	3		0.2702	0.2007	3	12.071	0.46	102.65	880.02	210
-	-	-	0.3702	0.2906	-	13.0/1	9.46	123.65	880.02	319
0.1156	0.0331	0.7908	58	69	0.1794			17		
8	6				9					
-	-	-	-	0.1451	-	13.208	9.53	125.87	880.83	317
0.1181	0.0029	0.8110	0.1770	37	0.0754			22		
5	6	7	2		6					
_	_	_	0.1566	_	_	13 311	9.53	126.85	879 54	315
0 1260	0.0020	0.8236	16	0 1 1 3 2	0 1034	15.511	7.55	38	017.54	515
0.1209	0.0020	0.8230	10	0.1152	0.1034			50		
4	8	3								
-	-	-	0.4250	-	-	13.583	8.9299	121.29	880.62	313
0.0874	0.0295	0.8368	65	0.2858	0.1329		99	62		
8	5	3		7	3					
-	-	-	0.0134	0.0634	-	13.718	8.9299	122.50	880.29	312
0.0360	0.0573	0.9120	78	58	0.2875		99	17		
3	1	5	10	50	1		,,,	17		
5	1	5	0.0000	0 2977	1	12 706	<u> 9 6700</u>	110.74	970 71	206
-	-	-	0.0909	0.2877	-	15.790	8.0799	119.74	8/9./1	500
0.0340	0.0302	0.9335		42	0.0536		99	93		
9	4	3			4					
0.0150	0.0031	-	0.0334	0.0230	0.0107	14.123	8.7	122.87	881.04	306
68	49	0.9237	32	17	4			01		
		4								
_	_	-	_	-	-	14 153	87	123.13	881.3	306
0.0050	0.0088	0.0348	0.2270	0.2151	0 1374	14.155	0.7	125.15	001.5	500
0.0039	0.0088	0.9340	0.2270	0.2151	0.1374			11		
	9	3	4		3	14.000	0.40	101.04	000 50	201
-	-	-	-	-	-	14.298	8.48	121.24	880.58	306
0.0309	0.0290	0.9558	0.1062	0.1770	0.1890			7		
7	4	2	5	6	7					
-	-	-	0.0786	-	-	14.508	8.48	123.02	880.98	305
0.0322	0.0503	0.9799	62	0.1967	0.1997			78		
9	9			4	1					
-	-	_	0.1217		-	14 658	8 34	122.24	881.18	304
0.0246	0.0722	0.0007	62	0 1674	0.1400	14.050	0.54	77	001.10	504
0.0240	0.0723	0.9997	05	0.1074	0.1409			//		
2			0.0000	8	1	11510		10510	001.1	202
0.0057	-	-	0.3082	-	-	14.718	8.5	125.10	881.1	303
18	0.0813	1.0195	67	0.0328	0.1278			3		
		2		5	7					
0.0123	-	-	-	0.0038	-	14.778	8.5	125.61	880.56	302
95	0.0776	1.0344	0.0543	61	0.1640			3		
	1	4	7		6			-		
	_			t	_	1/ 0/9	8 /0	126.00	880.14	301
-			-	1 -	-	14.740	0.47	120.90	000.14	301
0.0120	0.0025	1 0417	0.1466	0.00/0	0.0007			95		
(0.0825	1.0417	0.1466	0.0860	0.0887			85		
6	0.0825 1	1.0417 2	0.1466 9	0.0860 7	0.0887 6			85		
6 -	0.0825 1 -	1.0417 2 -	0.1466 9 0.0395	0.0860 7 -	0.0887 6 -	14.971	8.49	85 127.10	881.18	300
6 - 0.0174	0.0825 1 - 0.0980	1.0417 2 - 1.0388	0.1466 9 0.0395 52	0.0860 7 - 0.1395	0.0887 6 - 0.0078	14.971	8.49	85 127.10 38	881.18	300
6 - 0.0174 5	0.0825 1 - 0.0980 1	1.0417 2 - 1.0388 6	0.1466 9 0.0395 52	0.0860 7 - 0.1395 4	0.0887 6 - 0.0078 8	14.971	8.49	85 127.10 38	881.18	300
6 - 0.0174 5 0.0091	0.0825 1 - 0.0980 1 -	1.0417 2 - 1.0388 6 -	0.1466 9 0.0395 52 0.1973	0.0860 7 - 0.1395 4 -	0.0887 6 - 0.0078 8 -	14.971	8.49	85 127.10 38 130.04	881.18 881.52	300
6 - 0.0174 5 0.0091 63	0.0825 1 - 0.0980 1 - 0.1107	1.0417 2 - 1.0388 6 - 1.0404	0.1466 9 0.0395 52 0.1973 22	0.0860 7 - 0.1395 4 - 0.0599	0.0887 6 - 0.0078 8 - 0.1132	14.971 15.228	8.49 8.54	85 127.10 38 130.04 71	881.18 881.52	300 300
6 - 0.0174 5 0.0091 63	0.0825 1 - 0.0980 1 - 0.1107 2	1.0417 2 - 1.0388 6 - 1.0404 7	0.1466 9 0.0395 52 0.1973 22	0.0860 7 - 0.1395 4 - 0.0599	0.0887 6 - 0.0078 8 - 0.1132	14.971 15.228	8.49 8.54	85 127.10 38 130.04 71	881.18 881.52	300 300
6 - 0.0174 5 0.0091 63	0.0825 1 - 0.0980 1 - 0.1107 2	1.0417 2 - 1.0388 6 - 1.0404 7	0.1466 9 0.0395 52 0.1973 22	0.0860 7 - 0.1395 4 - 0.0599 9	0.0887 6 - 0.0078 8 - 0.1132 4	14.971 15.228	8.49 8.54	85 127.10 38 130.04 71	881.18 881.52	300
6 - 0.0174 5 0.0091 63	0.0825 1 - 0.0980 1 - 0.1107 2 - 0.1172	1.0417 2 - 1.0388 6 - 1.0404 7 - -	0.1466 9 0.0395 52 0.1973 22	0.0860 7 - 0.1395 4 - 0.0599 9 -	0.0887 6 - 0.0078 8 - 0.1132 4 -	14.971 15.228 15.361	8.49 8.54 8.62	85 127.10 38 130.04 71 132.41 127.10	881.18 881.52 880.92	300 300 300
6 - 0.0174 5 0.0091 63 0.0075 5	0.0825 1 - 0.0980 1 - 0.1107 2 - 0.1172	1.0417 2 - 1.0388 6 - 1.0404 7 - 1.0559	0.1466 9 0.0395 52 0.1973 22 - 0.2400	0.0860 7 - 0.1395 4 - 0.0599 9 - 0.0591	0.0887 6 - 0.0078 8 - 0.1132 4 - 0.1986	14.971 15.228 15.361	8.49 8.54 8.62	85 127.10 38 130.04 71 132.41 18	881.18 881.52 880.92	300 300 300
6 - 0.0174 5 0.0091 63 0.0075 5	0.0825 1 - 0.0980 1 - 0.1107 2 - 0.1172 9	1.0417 2 - 1.0388 6 - 1.0404 7 - 1.0559	0.1466 9 0.0395 52 0.1973 22 - 0.2400 7	0.0860 7 - 0.1395 4 - 0.0599 9 - 0.0591 9	0.0887 6 - 0.0078 8 - 0.1132 4 - 0.1986 4	14.971 15.228 15.361	8.49 8.54 8.62	85 127.10 38 130.04 71 132.41 18	881.18 881.52 880.92	300 300 300
6 - 0.0174 5 0.0091 63 0.0075 5	0.0825 1 - 0.0980 1 - 0.1107 2 - 0.1172 9 -	1.0417 2 - 1.0388 6 - 1.0404 7 - 1.0559 -	0.1466 9 0.0395 52 0.1973 22 - 0.2400 7 -	0.0860 7 - 0.1395 4 - 0.0599 9 - 0.0591 9 -	0.0887 6 - 0.0078 8 - 0.1132 4 - 0.1986 4 -	14.971 15.228 15.361 15.401	8.49 8.54 8.62 8.62	85 127.10 38 130.04 71 132.41 18 132.75	881.18 881.52 880.92 880.87	300 300 300 300
6 - 0.0174 5 0.0091 63 0.0075 5	0.0825 1 - 0.0980 1 - 0.1107 2 - 0.1172 9 - 0.1260	1.0417 2 - 1.0388 6 - 1.0404 7 - 1.0559 - 1.0737	0.1466 9 0.0395 52 0.1973 22 - 0.2400 7 - 0.3552	0.0860 7 - 0.1395 4 - 0.0599 9 - 0.0591 9 - 0.1108	0.0887 6 - 0.0078 8 - 0.1132 4 - 0.1986 4 - 0.1020	14.971 15.228 15.361 15.401	8.49 8.54 8.62 8.62	85 127.10 38 130.04 71 132.41 18 132.75 66	881.18 881.52 880.92 880.87	300 300 300 300

8	4	9	7	1	7					
- 0.0566	- 0.1260	- 1.0725	0.0076 25	0.1015 04	0.0557 04	15.556	8.69	135.18 16	881.02	298
4 - 0.0323	6 - 0.1045	- 1.0526	0.3359 37	0.1956 87	0.1850 06	15.618	8.69	135.72 04	880.55	298
4 - 0.0247	8 - 0.0839 7	9 - 1.0449	- 0.1017 2	0.0541 46	- 0.0148	15.751	8.83	139.08 13	881.45	299
- 0.0477 6	- 0.0831	- 1.0645 4	- 0.2557 7	- 0.0815 4	- 0.2050 3	15.83	8.9299 99	141.36 19	880.46	300
- 0.0740 4	- 0.0901 9	- 1.0881	- 0.0559 6	- 0.0807 4	- 0.1457	15.968	8.9299 99	142.59 42	880.35	299
- 0.0525 1	- 0.1016 8	- 1.0965 2	0.1928 93	0.0708 39	0.0038 39	16.238	8.92	144.84 3	880.62	298
- 0.0423 1	- 0.0958	- 1.0932 7	0.2889 39	0.1474 63	0.0905 73	16.248	8.92	144.93 22	880.59	297
- 0.0041 8	- 0.0706 5	- 1.0657 1	0.3828 56	0.1463 99	0.2166 83	16.415	9.23	151.51 05	880.82	297
0.0297 84	- 0.0619 9	- 1.0516 9	0.2123 15	- 0.0108 4	- 0.0757 1	16.448	9.4699 99	155.76 25	880.73	298
0.0216 14	- 0.0645 6	- 1.0792 3	- 0.3155 4	- 0.0049 9	- 0.3545 4	16.583	9.4699 99	157.04 1	880.8	299
- 0.0549 2	- 0.0549 8	- 1.1139 9	- 0.5738 8	0.1054 26	- 0.1850 6	16.69	9.49	158.38 81	880.39	298
-0.091	- 0.0427 1	- 1.1107 7	- 0.0665 1	0.0950 5	0.0700 87	16.883	9.5599 99	161.40 15	879.94	296
- 0.0921 6	- 0.0258 3	- 1.0983 4	- 0.0476 2	0.1793 9	0.0466 74	17.085	9.5599 99	163.33 26	879.52	296
- 0.1284 9	-9.76E- 05	- 1.1007 5	- 0.5299 8	0.2270 13	- 0.0669 3	17.123	9.45	161.81 24	880.41	296
- 0.1970 5	0.0279 98	- 1.1102 5	- 0.4855 5	0.2557 47	- 0.0171 8	17.333	9.45	163.79 69	880.84	297
- 0.2245 6	0.0480 17	- 1.1143 8	- 0.0383 1	0.0846 74	0.0339 03	17.35	9.62	166.90 7	881.98	296
- 0.2251 6	0.0500 43	- 1.1301 7	- 0.0071 8	- 0.0023 3	- 0.1978 3	17.523	9.4	164.71 62	881.33	296
- 0.2386 2	0.0466 56	- 1.1694 4	- 0.1497 9	0.0399 77	- 0.3258	17.615	9.4	165.58 1	881.1	295
- 0.2678 9	0.0454 58	- 1.2075 8	- 0.0713	0.0447 66	- 0.2292 2	17.718	9.44	167.25 79	881.31	293

-	0.0432	-	0.3887	-	-	17.813	9.44	168.15	879.89	291
0.2447	98	1.2308	09	0.0174	0.1613			47		
-	0.0438	-	0.5212	9	-	17 925	9 4 9	170.10	880 57	289
0.1885	54	1.2558	0.5212	28	0.2571	17.925	7.47	83	000.57	207
	-	3	-		6					
-	0.0506	-	0.1218	0.0977	-	18.028	9.3	167.66	881.67	288
0.1553	36	1.3002	56	11	0.4157			04		
	0.0101	8			3	10.0.00		1 60 00		
-	0.0434	-	-	-	-	18.268	9.3	169.89	882.29	286
0.1891	84	1.5509	0.5570	0.0209	0.4657			24		
-	0.0354	-	0.0332	0.0788	-	18 318	9 3099	170 54	881.87	283
0.2087	84	1.3937	6	21	0.3223	10.510	99	06	001.07	205
2		9			4					
-	0.0476	-	0.1599	0.2046	-	18.42	9.3099	171.49	881.58	280
0.1889	44	1.4222	02	65	0.1935		99	02		
1	0.0642			0.1051	7	10 (75	0.00	172.40	001.06	070
-	0.0643	-	-	0.1251	-	18.6/5	9.29	1/3.49	881.26	279
0.2217	2	1.4411	0.3013	14	0.0924			08		
-	0.0651	-	-	-	0.0208	18.705	9.21	172.27	881.61	277
0.3129	78	1.4432	0.5802	0.0515	67			31		
2		5	6	5						
-	0.0497	-	0.2969	-	0.0025	18.775	9.21	172.91	881.26	277
0.3198	45	1.4334	2	0.2090	09			78		
1	0.0134	/	0.1622	5	0.387	18 8/15	0.1300	172.24	881.28	277
0.2855	92	- 1 4495	96	- 0.2308	-0.387	10.045	9.1399	33	001.20	211
7	12	9	70	7			,,,	55		
-	-	-	-	-	-	19.058	9.1399	174.19	881.3	277
0.3216	0.0215	1.5083	0.5443	0.0438	0.6666		99	01		
9	8	5	5	3	2					
-	-	-	-	0.1506	- 0.4750	19.098	9.0999	173.79	881.83	274
0.5755	0.0550 9	9	0.2451	50	0.4750		99	10		
-	-	-	0.1742	0.1312	-	19.395	9.19	178.24	881.85	270
0.3741	0.0322	1.6177	69	34	0.2223	171070	,,	01	001100	
2	2	9			1					
-	-	-	0.0925	0.1535	-	19.395	9.19	178.24	881.21	267
0.3601	0.0171	1.6423	9	82	0.0802			01		
1	4	3	0.0225		3	10.479	0.17	179 (1	000 17	266
- 0.3/33	-	-	0.2355	-	- 0.2813	19.478	9.17	1/8.01	882.17	200
7	7	5	,,	0.0002	7			55		
-	-	-	-	0.3390	-	19.673	9.17	180.40	881.52	265
0.3361	0.0183	1.7302	0.0750	23	0.5540			14		
3	3		2		8					
-	0.0092	-	-	0.4946	-	19.733	9.42	185.88	882.56	262
0.3904	15	1.8098	0.6071	65	0.4516			49		
	0.0201	9	3	0.2224	3	10.915	0.6200	101.01	882.02	257
- 0 4596	88	- 1 8662	0.2833	35	- 0.2180	19.015	9.0399	191.01 66	002.92	237
0.4370	00	2	5	55	5					
-	0.0487	-	0.1234	0.1328	-	19.998	9.6399	192.78	882.04	253
0.4590	6	1.9091	52	3	0.3029		99	07		
9		1			2					
-	0.0321	-	-	0.1581	-	20.11	9.66	194.26	882.73	251
0.4955	83	1.9663	0.5720	05	0.5676			26		

2		5	2		5					
- 0.6073	0.0277 48	- 2.0406	- 0.9389	0.3249 22	- 0.4266	20.285	9.66	195.95 31	882.6	248
- 0.6893	0.0308 71	4 - 2.0949	- 0.2075	0.2631 97	- 0.2702	20.355	9.7199 99	197.85 06	882.2	244
- 0.6672	0.0255 11	- 2.1458 5	2 0.4291 49	0.2522 89	- 0.4388 8	20.493	9.76	200.01 17	882.24	240
- 0.6743 3	0.0090 2	- 2.2264 7	- 0.5214 6	0.3499 31	- 0.7105 2	20.535	9.76	200.42 16	882.32	238
- 0.7549 8	- 0.0035 9	- 2.3105	- 0.5273 2	0.4363 99	- 0.4638 9	20.688	9.91	205.01 81	882.05	234
- 0.7312 4	0.0138 49	- 2.3569 9	0.8511 13	0.3717 47	- 0.0280 9	20.942	9.91	207.53 52	881.25	229
- 0.5913 1	0.0453 11	- 2.3793 2	1.1357 91	0.3658 94	- 0.0565 6	20.972	9.8	205.52 56	881.88	225
- 0.5178 2	0.0443 36	- 2.4285 1	0.5036 45	0.2453 71	- 0.4396 7	21.02	10.37	217.97 74	881.59	224
- 0.4115 1	0.0317 39	- 2.5023 3	1.2374 24	0.1865 73	- 0.6091 5	21.255	10.37	220.41 44	882.14	222
- 0.2209	0.0298 77	- 2.5862 5	1.6442 22	0.2304 72	- 0.6722 1	21.3	10.4	221.52	882.89	218
- 0.0550 2	0.0560 09	- 2.6675 6	1.1488 28	0.3427 47	- 0.5378 5	21.455	10.4	223.13 2	882.03	213
0.0488 19	0.0918 3	- 2.7025 5	0.8444 61	0.1980 14	- 0.0142 5	21.512	10.47	225.23 06	881.38	208
0.1783 62	0.0999 62	- 2.6817 7	1.3068 64	0.0213 53	0.2797 38	21.762	10.44	227.19 53	881.39	205
0.3224	0.0931 88	- 2.6580 8	0.8452 59	0.0319 95	0.0927 02	21.797	10.44	227.56 07	881.22	205
0.3203 93	0.1145 96	- 2.6682 8	- 0.5845 2	0.2296 74	- 0.1302 5	21.882	10.48	229.32 34	881.94	207
0.2346 31	0.1460 31	- 2.6714 1	- 0.5762 7	0.2440 41	0.0285 82	22.022	10.55	232.33 21	881.27	207
0.1898 56	0.1718 46	- 2.6636 7	- 0.3594 4	0.1192 61	0.0256 56	22.342	10.55	235.70 81	881.14	206
- 0.0215 3	0.1477 98	- 2.6919	- 1.5029 4	- 0.3258 5	- 0.0664	22.555	10.11	228.03 11	882.67	207
- 0.0844 7	0.1349 37	- 2.6956 6	- 1.5226 3	- 0.3013 7	- 0.0352 7	22.592	10.11	228.40 51	881.95	207

	0.1070		1		0.0576	22 (22	10.12	000.16	001.00	205
-	0.1070	-	-	-	0.3576	22.022	10.15	229.10	881.82	205
0.2096	85	2.6733	0.5488	0.1883	92			09		
6			7							
-	0.1097	-	0.3613	-	0.3922	22.682	9.82	222.73	882.52	206
0.2037	96	2.6255	05	0.0031	79			72		
9		5		2						
-	0.1250	-	-	0.0838	0.0748	22,705	9.82	222.96	882.98	209
0 1901	72	2 6019	0 1867	76	76	22.705	2.02	31	002.90	207
0.1901	12	2.0019	0.1807	70	70			51		
1	0.1007	2	/		0.0110	22.002	0.70	225.10	002.12	210
-	0.1087	-2.603	0.0641	-	0.0118	23.002	9.79	225.18	882.12	210
0.2594	05		22	0.0230	21			96		
6				8						
-	0.1124	-	0.3666	0.1535	0.0001	23.057	9.79	225.72	883.49	211
0.2488	18	2.6044	27	82	14			8		
8		8						-		
0	0.1402	0	0.8782	0 3067	0.0208	23.082	9.66	222.07	883.75	210
-	0.1492	-	0.0702	0.3907	0.0208	23.082	9.00	222.97	003.23	210
0.1599	08	2.6066	5	57	67			21		
6		6								
-	0.1799	-	0.6598	0.0894	-	23.23	9.57	222.31	882.78	210
0.0714	99	2.6188	19	63	0.1408			11		
5		3			9					
_	0.1662	_	0 1548	-	_	23 425	9.57	224.17	884 28	209
0.0400	61	2 6572	47	0.2444	0.2642	23.425	2.57	72	004.20	207
0.0400	01	2.0375	4/	0.2444	0.3043			15		
3		4		4	8					
-	0.1398	-	0.3937	-	-	23.465	9.23	216.58	884.79	207
0.0169	27	2.7086	64	0.1704	0.4013			2		
4		7		7	6					
0.0483	0.1279	-	0.6212	-	-	23.572	9.23	217.56	884.15	204
2	1	2 7532	41	0.0007	0.3156	201072	2.20	96	000	-0.
2	1	2.7552	41	0.0007	0.5150			70		
0.07(2	0.1254	/	0.0401	3	9	00 710	0.20	222.41	002.52	202
0.0763	0.1354	-	0.0481	0.0684	-	23.712	9.38	222.41	883.52	202
69	39	2.7780	59	45	0.1041			86		
		5			8					
0.0597	0.1482	-	-	0.0178	0.1451	23.89	9.03	215.72	883.94	200
14	64	2.7751	0.1532	94	14			67		
	-	4	4	-						
0.0537	0 1371			_	0 1302	23 055	9.03	216 31	883 78	201
0.0557	0.1571	2 7500	0.0001	-	0.1372	23.755	7.05	210.51	005.70	201
08	82	2.7590	0.0021	0.1960	01			57		
		3	3	1						
0.0397	0.0954	-	-	-	-	24.077	9.08	218.61	884.79	201
39	19	2.7590	0.2181	0.3718	0.0807			92		
		7	6	8	7					
-	0.0458	-	-	-	-	24.242	9.08	220.11	884.72	201
0.0152	38	2 7811	0 5480	0 3992	0 1911			74		-
1	50	0	7	8	8			7 -		
1	0.0104	7	/	0	0 0212	24 217	0.00	219.26	0057	200
-	0.0184	-	-	-	0.0312	24.317	8.98	218.30	885./	200
0.0812	96	2.7925	0.4834	0.1308	43			67		
2		6	2	3						
-	0.0455	-	0.0790	0.3709	0.3731	24.445	9.16	223.91	885.65	200
0.1021	19	2.7617	21	49	23			62		
1	-	7			-			-		
_	0.0780		0.0595	0.2504	0.4167	24.61	916	225 12	884 61	201
0.000	0.0707	2 7105	0.0575	72	56	27.01	2.10	76	007.01	201
0.0890	07	2.7195	77	12	50			10		
8		3						ļ		
-	0.0910	-	-	-	0.1512	24.717	9.15	226.16	884.67	204
0.1056	93	2.6855	0.3650	0.0600	34			06		
5		1	2	6						
-	0.0751	-	-	-	-	24.78	8.96	222.02	885.6	206
0 1642	35	2 6811	0 4017	0 1558	0.0134			88		
	55	2.0011	0.101/	0.1550	0.0104	1	1	00		1

4		7	4	4	5					
- 0.1756 6	0.0754 58	- 2.6874 8	0.1516 54	0.0812 15	- 0.0483 1	25.022	8.96	224.19 71	885.91	206
- 0.1395 7	0.0791 5	- 2.6935 7	0.3839 2	- 0.0108 4	- 0.0312 8	25.172	9.09	228.81 35	885.47	205
- 0.1027 4	0.0672 39	- 2.7084 7	0.2498 28	- 0.1076 8	- 0.2044 8	25.182	9.09	228.90 44	884.98	205
- 0.0729 2	0.0522 23	- 2.7323 5	0.2695 17	- 0.1127 4	- 0.1632 4	25.395	9.04	229.57 08	885.77	204
- 0.0429 7	0.0479 81	- 2.7464 5	0.2724 43	0.0343 9	- 0.0562 9	25.472	9.11	232.04 99	884.96	203
0.0072 04	0.0489 85	- 2.7443 7	0.4592 14	- 0.0071 1	0.0935	25.55	9.11	232.76 05	886.02	202
0.0466 35	0.0537 51	- 2.7370 1	0.2253 51	0.0724 36	0.0546 56	25.592	9.0999 99	232.88 72	885.73	202
0.0601 02	0.0682 05	- 2.7408	0.0603 97	0.1477 29	- 0.0520 3	25.755	9.0999 99	234.37 05	886.54	203
0.0342 5	0.0864 58	- 2.7513 1	- 0.4038 7	0.1080 87	- 0.0775 7	25.853	9.16	236.81 35	885.93	202
- 0.0263 3	0.0823 22	- 2.7664 4	- 0.4948 6	- 0.1473 3	- 0.0911 4	26.173	9.07	237.38 91	885.77	202
- 0.0855 7	0.0573 93	- 2.7685 2	- 0.4581 4	- 0.2391 1	0.0280 5	26.203	9.07	237.66 12	886.69	201
- 0.1185 7	0.0302 19	- 2.7620 5	- 0.1191 9	- 0.1771 2	0.0400 23	26.381	9.21	242.96 9	886.07	201
- 0.1260 5	0.0183 12	- 2.7515 4	- 0.0649 1	- 0.0480 9	0.0879 13	26.441	9.21	243.52 16	885.52	201
- 0.1338 2	0.0189 97	- 2.7445 7	- 0.0920 5	- 0.0201 5	0.0378 94	26.506	9.16	242.79 5	886.55	202
- 0.1515 4	0.0117 79	- 2.7341 7	- 0.1503 2	- 0.1082 2	0.1001 51	26.563	9.2	244.37 96	885.49	203
- 0.1479 7	0.0038 99	- 2.7243 4	0.2019 39	- 0.0395 7	0.0554 54	26.768	9.2	246.26 56	886.66	203
- 0.1069 2	0.0013 16	- 2.7147 6	0.3876 45	- 0.0113 7	0.0841 88	26.888	9.37	251.94 06	886.11	204
- 0.0628 3	-0.002	- 2.7199 9	0.3575 81	- 0.0385 1	- 0.1193 4	26.973	9.37	252.73 7	885.51	204
-0.025	- 0.0058 8	- 2.7448 3	0.1742 69	0.0008 67	- 0.2236 4	27.153	9.3	252.52 29	885.9	203

-	-	-	0.2067	-	-	27.216	9.45	257.19	886.47	202
3	0.0047	2.7713	28	0.0071	0.1750			12		
0.0162	-	-	0.1442	-	-	27.406	9.45	258.98	886.29	200
14	0.0096	2.7888	05	0.0504	0.1025			67		
0.0420	7	5	0.20(1	8	8	27.469	0.60	266.16	006.02	100
0.0429 87	- 0.0127	- 2 7983	0.2001 95	0.0108	- 0.0666	27.408	9.09	200.10 49	880.23	199
07	4	2.1705)5	5	7					
0.0357	-	-	-	0.0727	0.0418	27.626	9.9699	275.43	885.73	199
12	0.0049	2.8013	0.1710	02	85		99	12		
0.0116	2	7	7		0.0820	27.656	0.0600	275 72	995 69	100
0.0110	- 0.0019	2.7952	- 0.1795	0.0151	59	27.030	9.9099	03	005.00	199
	3	8	8							
-	-	-	-	0.0037	0.0589	27.788	10	277.88	886.71	200
0.0202	0.0009	2.7876	0.3421	93	13					
5	5	8 -	4	_	0.0607	27 988	10	279.88	887.27	200
0.0915	0.0049	2.7814	0.7005	0.0667	75	27.900	10	279.00	007.27	200
1		6	2	1						
-	-	-	-	-	0.1658	28.051	10.07	282.47	885.84	200
0.1508	0.0135	2.7649	0.2423	0.1013	6/			36		
-	-	-	0.3187	0.1030	0.1405	28.361	10.29	291.83	885.52	202
0.1303	0.0086	2.7441	37	32	92			47		
4	1	6			0.040 -	00.044	10.00		00705	
-	0.0164	-	-	0.2855	0.0405	28.361	10.29	291.83	885.96	202
7	0	2.7387	4	40	55			47		
-	0.0580	-	-	0.3180	0.1836	28.391	10.39	294.98	885	203
0.1469	64	2.7325	0.3485	04	92			25		
1	0.0010		3	0.1410	0.2733	28 601	10.30	207.16	886.05	203
- 0.1446	69	2.7069	84	78	53	28.001	10.39	44	880.05	203
6										
-	0.0954	-	0.3509	-	0.0269	28.631	10.42	298.33	885.92	205
0.0987	09	2.6889	29	0.0052	86			5		
-	0.1006	-	0.0351	0.1059	-	28.831	10.43	300.70	886.05	205
0.0831	45	2.7073	22	59	0.2047			73		
5		9			5					
-	0.1187	-	0.2208	0.1597	-	28.946	10.43	301.90	886.37	204
0.0717	54	2.7550	29	02	0.1278			08		
-	0.1332	-	0.3371	0.1441	-	29.021	10.58	307.04	886.26	203
0.0375	4	2.7485	39	2	0.0921			22		
1	0.1402	3	0 2007	0 1552	6	20.272	10.59	200.70	006 10	202
53	0.1492	- 2.7623	0.3227	0.1552 94	- 0.0916	29.215	10.38	309.70 83	000.19	202
		1	· -	´ '	3					
0.0178	0.1613	-	-	0.0438	-	29.348	10.44	306.39	886.67	201
83	87	2.7793	0.0201	17	0.1562			31		
-	0.1600	-	-	-	ð -	29.468	10.21	300.86	886 57	200
0.0152	74	2.8055	0.3386	0.0591	0.1961	27.700	10.21	83	000.57	200
4		3	4	5	9					
-	0.1501	-	-	-	-	29.528	10.21	301.48	886.36	198
0.0494	2	2.8189	0.1840	0.0916	0.0482			09		

8		4	6		6					
-	0.1427	-	-	-	0.0818	29.573	10.22	302.23	886.79	198
0.0659	05	2.8141	0.1542	0.0248	38			61		
7		5	6	2						
-	0.1428	-	-	0.0007	0.2255	29.683	10.22	303.36	887	199
0.0943	12	2.7944	0.3522	16	08			03		
8		8	1							
-	0.1535	-	-	0.1108	0.2555	29.858	9.91	295.89	887.28	200
0.1307	39	2.7649	0.2106	63	72			28		
		4	7							
-	0.1727	-	0.0657	0.1100	0.1459	29.981	9.83	294.71	887.59	202
0.1285	84	2.7433	63	65	57			32		
		2								

A.2 LANDING FLIGHT

Roll_Sp eed(rad/	Pitch_S peed	Yaw_S peed	Roll (deg)	Pitch (deg)	Yaw (deg)	alt(m)	Ground speed	horizon tal (m)	Headin g (deg)
s)	(rad/s)	(rad/s)	((((m/s)		8 (8)
0.32392	-	-	-	6.86936	-	882.62	7.86	4.56666	340
37	0.21879	0.31073	5.78783	8621	19.2414				
	01	79			296				
0.23612	-	-	-	5.07550	-	882.66	7.65	4.44465	340
57	0.25923	0.11279	4.00218	3082	19.7362				
	04	31			933				
0.12970	-	-	-2.8487	3.02547	-	882.29	7.64	5.12644	340
37	0.28078	0.03217		2124	19.4019				
	09	849		1 000 50	323			6 0 7 0 4 4	2.12
-	-	0.04364	-	1.22352	-	882.57	7.64	6.27244	342
0.13688	0.20149	715	2.09002	9599	18.7887				
33	66	0.400.40			872	000.01			2.12
-	-	0.10962	-	-	-	882.31	7.57	6.51777	343
0.25128	0.22278	88	2.96255	0.40577	17.3302				
69	09	0.06652		/30	312	000 1	7 57	7 57757	215
-	-	0.00052	-	-	-	882.1	1.57	1.5/15/	545
0.20080	0.25045	/8/	4.51140	2.28245	15.8175				
49	00	0.02661		243	427	001 05	7 60	0 27000	216
-	- 0 13764	0.02001	- 5 7/028	- 3 58632	- 14 0837	001.03	7.08	0.37000	540
421	34	705	5.74720	332	552				
421	-	0.00107	_	-	-	881.91	7 75	9 23025	347
0 35691	0 00674	8365	7 84074	3 77305	13 1309	001.71	1.15	7.23025	547
07	437	0505	/.010/1	141	264				
-	-	-	-	-	-	881.34	7.81	10.4732	347
0.90152	0.03148	0.02605	13.1131	3.68624	12.6808			1	
5	748	923		945	738			-	
-	-	-	-18.457	-	-	880.7	7.81	11.7228	347
0.54926	0.06953	0.04734		4.03449	12.4956			1	

83	333	363		435	652				
0.11081	-	-	-	-	-	880.69	8.05999	14.7578	345
38	0.00674	0.23650	16.2324	4.32824	12.9974		9	6	
	437	87		58	101				
-	0.05737	-	-	-	-	880.58	8.26	15.3718	344
0.47051	485	0.27189	17.3391	4.85408	14.6888			6	
61	0.109.45	39		984	846	000.04	9.05	15 0 4 0 0	246
0.01210	0.10845	-	-	-	-	880.04	8.25	15.8482	346
/40	/4	0.05771 976	19.3790	4.42981	256			5	
0.79297	-	-	-	-	-	879.55	8.25	18.4057	346
86	0.09560	0.11093	10.3171	3.32323	13.1664			5	
	67	07		485	498				
0.12970	0.09355	-	-	-	-	879.01	8.7	23.0637	344
37	831	0.14738	9.83726	4.15233	15.9070				
0.96274	0 1 6 9 5 9	03		801	387	070 15	07	22.0627	246
0.86374	0.16858	0.18013	- 5 11761	- 2 88756	-	878.45	8.7	23.0637	346
71	50	55	5.44704	2.88730 519	038				
0.54900	0.19013	0.24717	0.48583	-	-	878.08	8.78	24.1537	348
62	62	91	3	1.17479	12.6357			8	
				553	763				
-	0.18268	0.15379	1.16375	-	-	877.92	8.96	25.0969	352
0.31035	67	39	7	0.22019	10.7986			6	
11	0.10007	0.22660	0.05120	691	444	970 44	8.07	25.0127	211
-	0.18987	0.22669	0.05139	0.49269	- 8 75476	872.44	8.96	25.8137	311
0.03084 664	02	29	5	1022	646			0	
0.51947	0.11058	0.27697	2.40887	1.44019	-	871.91	9.02	26.7082	312
41	58	73	2	3016	6.24742			2	
					866				
-	-	-	0.92628	-	-	870.96	8.88999	51.1441	313
0.15902	0.01728	0.03969	1	0.46357	48.6446		9	6	
81	065	025	0.20005	946	/83	971.09	0.08	52 0716	214
- 0.11619	0.04557 987	-	0.20885	- 0.43119	- 48 3192	871.08	9.08	55.8710 4	514
32	201	728		767	612			-	
0.25176	-	-	0.76858	-	-	870.48	9.29	55.1175	315
07	0.02499	0.01042	5	0.36433	47.5197			7	
	624	421		722	845				
0.00699	-	0.01006	1.56144	-	-	870.69	9.29	57.0684	318
019	0.28067	201	8	1.59418	46./459			/	
_	-	_	_	-	-	870.17	9 1 9	56 7298	319
0.56901	0.23411	0.03436	0.25471	3.51527	46.5429	070.17	5.15	7	517
86	54	915		655	946				
-	-	0.05848	-	-	-	869.32	9.46	59.3425	319
0.21330	0.02419	4	3.16055	4.57882	45.5521			8	
33	807	0.05110		087	157	0.00.50	0.46	50 (2/2	210
0.17/26	0.15139	0.25110	-	- 2 95121	-	869.62	9.46	59.6263	319
33	02	//	5.25507	5.85454 094	45.2045			0	
-	0.03406	0.16783	-	-	-	868.94	9.48	60,1316	321
0.25028	794	26	4.02412	3.16085	40.9967			4	
49				747	402				
-	-	-	-	-	-	869.05	9.48	60.7004	323
0.63287	0.09869	0.05299	7.20355	3.58291	40.3456			4	
17	344	299		078	597				

0.03439	0.05455	-	-	-	-	868.24	9.46	63.8833	325
385	417	0.03011	10.3945	4.07159	40.4104			8	
		227		107	612				
-	0.06386	0.12686	-	-	-	868.24	9.63999	66.5449	325
0.25533	609	01	11.3728	3.50637	39.7179		9	1	
99				795	328				
0.01843	0.06493	0.20135	-11.666	-	-	868.08	9.63999	66.8341	324
056	031	55		2.90758	38.0922		9	1	
				606	338				
0.68489	0.10137	0.17448	-	-	-	867.49	9.75	69.0592	323
81	98	39	8.87666	2.00107	35.8029			5	
				744	58				
0.41059	0.10882	0.00686	-	-	-	867.23	9.75	69.7417	322
54	94	9356	4.92569	0.99599	34.1930			5	
				431	727				
-	0.06173	-	-	-	-	867.2	9.76	74.9860	322
0.03318	765	0.20384	4.60383	0.38838	34.4451			8	
409		61		122	226				
0.26559	-	-	-	-	-	867.25	9.71999	75.2619	329
55	0.04415	0.27887	3.92235	0.59366	35.7205		9	5	
0.66040	219	36	0.25020	907	839	066.0	0.57	74 4022	222
0.66840	-	-	0.35929	-	-	866.9	9.57	14.4833	333
27	0.0/155	0.29031	5	1.34640	36.9368			1	
0.20200	584	39	2 00001	121	0/1	0.65.07	0.57	74 7704	224
0.30390	-	-	3.99801	-	-	865.87	9.57	/4.//04	334
/4	0.06250	0.20830	1	2.00194	37.5538			1	
	998	9	2 6 9 2 9 1	089	139	866.02	0.58	75 1022	225
-	0.02555	0.12155	2.00501	-	-	800.02	9.38	15.4255	333
0.11991 Q	419	9	2	2.10195	285			4	
0 37042	0 12452	0 51263	1 22225	511	203	864.80	0.67	77 0080	338
11	66	96	7.22323 2	1 84277	- 33 7591	004.07	9.07	1	550
11	00	<i>y</i> 0	2	895	775			1	
_	0 11627	0 19523	7 07050	-	-	864 39	9.92	81 6713	339
0.28061	89	62	5	1.01117	26.2021	001107		6	007
51		-	-	998	105			-	
-	-	-	-	-	-	864.06	9.74	82.1471	340
0.31600	0.02818	0.09449	0.46228	1.19132	24.5920			6	
04	89	755		364	017				
0.16795	0.03167	0.05209	-	-	-	863.74	9.74	91.8871	339
34	345	868	11.4083	1.79396	21.7140			6	
				523	863				
-	0.08594	0.07763	-	-	-	863.87	9.53	89.9060	338
0.19627	865	995	11.7917	1.15553	20.7395			2	
57				269	023				
-	0.20354	0.06407	-	0.21746	-	863.28	9.53	90.4778	338
0.01243	49	115	12.6184	997	20.2158			2	
181				1 50 (50	704	0.62.0	0.40	05 1000	220
0.26399	-	-	-	1.70679	-	862.9	9.48	95.1223	339
92	0.04787	0.18096	7.92865	8299	19.9677			2	
0.07077	090	54		1 (007)	308	0(0.0)	0.42000	06.0701	241
0.27277	0.06253	-	-	1.60876	-	862.96	9.42999	96.9781	541
9	382	0.21001	5.05246	9804	20.7551		9	1	
		0/		0 12025	/04	963 40	0.42000	07 4407	242
-	0 10510			1 2 13233	-	802.49	1 9.42999	97.4490	343
0.02280	0.10510	- 0.17501	- 3 06255	7545	21 6766		0	1	
0.02280	0.10510 46	- 0.17591 03	3.96255	7545	21.6766		9	1	
0.02280 795	0.10510 46	0.17591 03	3.96255	7545	21.6766 32	862 7	9	1	344
0.02280 795 0.09452 225	0.10510 46 0.04604 041	- 0.17591 03 - 0.03224	- 3.96255 - 3.77261	2.76154 8283	21.6766 32 - 21.3272	862.7	9 9.28	1 97.3843	344

		071			997				
0.45901 74	- 0.06543 658	0.13563 99	- 1.81065	2.65307 7632	- 19.7296 069	862.49	9.28	98.9619 2	345
0.32173 31	- 0.16786 77	0.13218 12	0.75447 1	1.72475 4797	- 17.7515 102	861.77	9.38	100.028 3	346
- 0.07814 736	- 0.12689 53	0.04145 649	0.78515 7	0.74682 1838	- 16.3373 128	862.07	9.3	100.012 2	346
0.08760 483	- 0.03351	0.07843 812	0.8612	0.25745 8299	- 15.2828 356	861.93	9.3	101.360 7	346
0.13203 6	- 0.01089 533	0.07763 995	2.11263 1	0.12754 9114	- 14.1608 009	862.02	9.34999 9	102.186 1	346
- 0.15423 91	- 0.05532 65	- 0.02026 824	2.82940 7	- 0.66520 114	- 13.3899 148	861.83	9.34999 9	103.869 1	347
- 0.55145 9	- 0.20671 17	- 0.12402 97	0.03976 5	- 1.95048 47	- 13.3375 694	861.37	9.8	109.162 2	348
- 0.47244 07	- 0.39906 94	- 0.22167 18	- 3.69441	- 4.23447 724	- 13.4977 627	861.34	9.86	112.492 7	350
0.02029 294	- 0.29317 96	- 0.14797 46	- 4.95314	- 6.95463 047	- 13.2925 12	861.15	9.86	112.887 1	354
0.04104 522	0.09685 69	0.03241 063	- 4.45507	- 7.47367 867	- 12.4081 86	861.21	10.15	117.526 9	356
- 0.44556 92	0.24584 76	0.24525 45	- 6.91682	- 5.77902 421	- 10.6642 572	860.32	10.15	118.643 4	355
- 0.21330 33	0.09047 158	0.41233 7	- 10.4803	- 4.07199 615	- 8.05635 383	860.25	10.17	119.487 3	353
0.42416 42	0.10537 07	0.25509 86	- 9.53377	- 2.79033 311	- 4.90715 089	859.97	10.16	120.893 8	352
0.00406 359	0.27351 73	- 0.01494 714	- 7.88369	- 1.03737 848	- 3.56905 036	860.1	10.05	120.188	349
- 0.18430 33	0.38552 64	- 0.30335 06	- 9.40889	1.29438 6143	- 5.16221 623	859.8	10.05	120.891 5	348
0.29512 76	0.25223 29	- 0.28020 38	- 9.35033	3.38955 9301	- 6.60609 451	859.93	10.15	122.906 4	349
0.68117 33	0.06147 16	- 0.21182 78	- 5.82287	4.34292 3829	- 7.72723 541	859.07	10.15	123.312 4	351
0.36696 24	- 0.15030 81	- 0.16739 66	- 2.11543	3.79567 5223	- 9.15483 997	859.07	10.46	128.124 5	359
- 0.22873 44	- 0.17558 33	- 0.18069 93	-2.0923	2.51013 4402	- 11.0667 027	859	10.24	126.146 6	298

0.95520	-	0.24871	2.45812	-	-	858.23	10.16	130.241	298
98	0.22639	32	4	2.13688	11.4165				
	98	_		162	221				
_	0 12479	0 31442	5 60851	_	-	858 62	10.16	130 545	296
0.04143	0.12+77 27	88	2	2 54263	10.093/	050.02	10.10	8	270
170	27	00	2	2.54205	126			0	
179	0.20071	0.47200	2.26490	944	150	050 41	0.01	100.106	20.4
-	0.38871	0.47299	3.20489	-	-	858.41	9.91	128.120	294
0.41044	91	15	1	1.13370	7.91075			4	
99				414	379				
0.47764	0.48689	0.36418	11.1843	5.25286	0.75203	857.81	9.9	130.076	295
13	34	1	3	2168	5754			1	
-	0.11574	-	9.27101	6.40616	-	857.89	9.71	127.968	297
0.68581	68	0.12509	9	6621	61.1453			1	
67		39	-		683				
-	_	-	5 99673	6 00764	-	858 3	9.71	130 502	299
0.13614	0 14232	0.33048	7	5827	62 4540	050.5	2.71	150.502	277
72	64	0.55040	/	5627	207			4	
73	04	02	0.04420	4.0550.4	207	057.66	0.50000	100.016	201
0.73065	-	-	8.94429	4.85504	-	857.66	9.59999	129.216	301
95	0.16414	0.27248	5	0382	64.2854		9		
	29	83			062				
0.23845	-	-	12.0941	4.23019	-	856.99	9.59999	129.984	304
79	0.08166	0.17830	9	8394	65.4200		9		
	593	48			346				
-	-	-	8.96822	4.04589	-	857.48	9.91	136.361	309
0.65202	0.06277	0.01867	2	6206	65 6571	007110		6	207
0.05202	603	101	2	0200	818			0	
//	005	0.022006	1 ((5))	2 49025	010	957.02	0.99000	126 670	210
-	-	0.23880	4.00524	2.48925	-	857.25	9.88999	130.079	512
0.41444	0.30994	92	8	5247	64.1691		9	8	
07	1				531			ļ	
0.31454	-	0.37828	4.73505	-	-	857.11	9.88999	137.767	311
96	0.50256	2	4	0.94861	61.5550		9	7	
	47			356	332				
-	-	0.22929	5.90341	-	-	856.85	9.83	138.799	308
0.17392	0.21070	12	3	3.53052	59.3466			6	
71	26		-	220	010			-	
	20			2.39	819				
_	0 19396	0 19763	0 16363	-	819	856 71	9.83	139 684	306
-	0.19396	0.19763	0.16363	- 3 32623	819 - 57 4979	856.71	9.83	139.684	306
- 1.16790	0.19396 69	0.19763 07	0.16363 8	- 3.32623	819 - 57.4979 763	856.71	9.83	139.684 3	306
- 1.16790 8	0.19396	0.19763 07	0.16363 8	- 3.32623 601	819 - 57.4979 763	856.71	9.83	139.684 3	306
- 1.16790 8 -	0.19396 69 0.30624	0.19763 07 0.49082	0.16363	- 3.32623 601 -	819 - 57.4979 763 -	856.71 856.95	9.83 9.77	139.684 3 139.417	306 307
- 1.16790 8 - 0.94974	0.19396 69 0.30624 21	0.19763 07 0.49082 32	0.16363 8 - 7.75043	- 3.32623 601 - 0.88986 262	819 - 57.4979 763 - 53.7050	856.71 856.95	9.83 9.77	139.684 3 139.417 9	306 307
- 1.16790 8 - 0.94974 31	0.19396 69 0.30624 21	0.19763 07 0.49082 32	0.16363 8 - 7.75043	- 3.32623 601 - 0.88986 362	819 - 57.4979 763 - 53.7050 014	856.71	9.83	139.684 3 139.417 9	306 307
- 1.16790 8 - 0.94974 31 0.12565	0.19396 69 0.30624 21 0.10803	0.19763 07 0.49082 32 0.47964	0.16363 8 - 7.75043	- 3.32623 601 - 0.88986 362 0.99330	819 - 57.4979 763 - 53.7050 014 -	856.71 856.95 856.92	9.83 9.77 10.02	139.684 3 139.417 9 143.686	306 307 308
- 1.16790 8 - 0.94974 31 0.12565 07	0.19396 69 0.30624 21 0.10803 12	0.19763 07 0.49082 32 0.47964 89	0.16363 8 - 7.75043 - 9.86155	- 3.32623 601 - 0.88986 362 0.99330 9427	819 - 57.4979 763 - 53.7050 014 - 49.2310	856.71 856.95 856.92	9.83 9.77 10.02	139.684 3 139.417 9 143.686 8	306 307 308
- 1.16790 8 - 0.94974 31 0.12565 07	0.19396 69 0.30624 21 0.10803 12	0.19763 07 0.49082 32 0.47964 89	0.16363 8 - 7.75043 - 9.86155	- 3.32623 601 - 0.88986 362 0.99330 9427	819 - 57.4979 763 - 53.7050 014 - 49.2310 834	856.71 856.95 856.92	9.83 9.77 10.02	139.684 3 139.417 9 143.686 8	306 307 308
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145	0.19396 69 0.30624 21 0.10803 12 0.02774	0.19763 07 0.49082 32 0.47964 89	0.16363 8 - 7.75043 - 9.86155 -	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 -	856.71 856.95 856.92 856.29	9.83 9.77 10.02 10.02	139.684 3 139.417 9 143.686 8 146.091	306 307 308 308
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71	0.19396 69 0.30624 21 0.10803 12 0.02774 776	0.19763 07 0.49082 32 0.47964 89 - 0.09935	0.16363 8 - 7.75043 - 9.86155 - 7.85595	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734	856.71 856.95 856.92 856.29	9.83 9.77 10.02 10.02	139.684 3 139.417 9 143.686 8 146.091 6	306 307 308 308
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71	0.19396 69 0.30624 21 0.10803 12 0.02774 776	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167	0.16363 8 - 7.75043 - 9.86155 - 7.85595	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241	856.71 856.95 856.92 856.29	9.83 9.77 10.02 10.02	139.684 3 139.417 9 143.686 8 146.091 6	306 307 308 308
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 -	0.19396 69 0.30624 21 0.10803 12 0.02774 776	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 -	0.16363 8 - 7.75043 - 9.86155 - 7.85595	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 -	856.71 856.95 856.92 856.29 855.95	9.83 9.77 10.02 10.02	139.684 3 139.417 9 143.686 8 146.091 6	306 307 308 308 310
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311	0.19396 69 0.30624 21 0.10803 12 0.02774 776	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0 57133	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305	856.71 856.95 856.92 856.29 855.95	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8	306 307 308 308 310
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12	0.19396 69 0.30624 21 0.10803 12 0.02774 776	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472	856.71 856.95 856.92 856.29 855.95	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8	306 307 308 308 310
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472	856.71 856.95 856.92 856.29 855.95	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8	306 307 308 308 310
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.67311	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 -	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3	$\begin{array}{c} 0.16363\\ 8\\ \hline \\ 7.75043\\ \hline \\ 9.86155\\ \hline \\ 7.85595\\ \hline \\ 10.1299\\ \hline \\ 15.0102\\ \end{array}$	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - -	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - - - - - - - - - - - - -	856.71 856.95 856.92 856.29 855.95 855.61	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247	306 307 308 308 310 313
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 740	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537	0.16363 8 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 422	856.71 856.95 856.92 856.29 855.95 855.61	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1	306 307 308 308 310 313
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499	856.71 856.95 856.92 856.29 855.95 855.61	9.83 9.77 10.02 10.02 10.01	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1	306 307 308 308 310 313
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 -	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 -	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 -	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 -	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 -	856.71 856.95 856.92 856.29 855.95 855.95 855.61	9.83 9.77 10.02 10.02 10.01 10.01 9.8	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824	306 307 308 308 310 313 316
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286 98	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 - 0.07574	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 - 0.09722	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 - 15.5277	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 - 0.98741	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 - 53.0894	856.71 856.95 856.92 856.29 855.95 855.61 855.93	9.83 9.77 10.02 10.02 10.01 9.8	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824	306 307 308 308 310 313 316
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286 98	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 - 0.07574 759	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 - 0.09722 323	0.16363 8 - 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 - 15.5277	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 - 0.98741 942	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 - 53.0894 442	856.71 856.95 856.92 855.95 855.95 855.61 855.93	9.83 9.77 10.02 10.02 10.01 9.8	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824	306 307 308 308 310 313
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286 98 0.77715	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 - 0.07574 759 -	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 - 0.09722 323 -	0.16363 8 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 - 15.5277 -	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 - 0.98741 942 -	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 - 53.0894 442 -	856.71 856.95 856.92 855.95 855.61 855.93 855.6	9.83 9.77 10.02 10.02 10.01 10.01 9.8 9.88999	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824 148.152	306 307 308 308 310 313 316 315
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286 98 0.77715 4	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 - 0.07574 759 - 0.31253	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 - 0.09722 323 - 0.10014	0.16363 8 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 - 15.5277 - 11.6477	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 - 0.98741 942 - 2.49792	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 - 53.0894 442 - 52.3559	856.71 856.95 856.92 855.95 855.61 855.93 855.6	9.83 9.77 10.02 10.02 10.01 10.01 9.8 9.88999 9	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824 148.152 2	306 307 308 308 310 313 316 315
- 1.16790 8 - 0.94974 31 0.12565 07 0.18145 71 - 0.67311 12 - 0.62921 21 0.26286 98 0.77715 4	0.19396 69 0.30624 21 0.10803 12 0.02774 776 - 0.05446 32 - 0.09463 748 - 0.07574 759 - 0.31253 64	0.19763 07 0.49082 32 0.47964 89 - 0.09935 167 - 0.57133 3 - 0.43537 9 - 0.09722 323 - 0.10014 98	0.16363 8 7.75043 - 9.86155 - 7.85595 - 10.1299 - 15.3103 - 15.5277 - 11.6477	- 3.32623 601 - 0.88986 362 0.99330 9427 1.32911 7126 0.90941 6374 - 0.51132 22 - 0.98741 942 - 2.49792 696	819 - 57.4979 763 - 53.7050 014 - 49.2310 834 - 47.2734 241 - 49.4305 472 - 52.4578 499 - 53.0894 442 - 52.3559 78	856.71 856.95 856.92 855.95 855.61 855.93 855.6	9.83 9.77 10.02 10.02 10.01 10.01 9.8 9.88999 9	139.684 3 139.417 9 143.686 8 146.091 6 146.946 8 147.247 1 145.824 148.152 2	306 307 308 308 310 313 316 315

0.68430	0.05967	-	-	-	-	855.14	9.88999	151.613	311
08	434	0.00889	6.24169	3.49594	51.7204		9	7	
0.06001	0.00402	3008		037	246	055 47	0.04000	151 (0	200
0.06891	0.60402 26	0.13477	- 4 24154	- 0 85436	- 51.0075	855.47	9.84999	151.69	309
505	20	00	7.27137	258	104		, ,		
0.05587	0.56943	0.42158	-	3.78160	-	855.15	9.84999	152.084	309
916	55	38	4.44216	2807	48.5290		9		
0.50404	0.0.0010	0.0001.1		6 0 70 64	21	0.54.00	a 1 a		
0.53424	0.06818	0.32314	-	6.07261	-	854.89	9.42	145.444 °	312
30	01	35	1.74096	5511	281			0	
0.72926	-	-	3.86581	4.48211	-	854.53	9.71	151.961	313
41	0.39208	0.04667	6	9342	43.5591			5	
	68	28	4	1 (5105	164	0.54.40	0.54	1.50.510	
-	- 0.38640	- 0.55430	4.57840	1.6/13/	- 45 6607	854.19	9.71	153.612	315
95	0.38049 97	55	0	8022	45.0097 955			2	
-	-	-	1.24672	0.03288	-	854.5	9.66	153.111	317
0.47702	0.11219	0.58064	6	7525	49.2533				
88	71	49			428				
0.14075	0.03466	-	0.04315	-	-	853.6	9.66	153.690	318
07	518	0.14298 47	4	0.07101 961	50.7524 047			0	
0.02129	-	0.19118	0.58777	-	-	853.91	9.75	158.242	318
203	0.08638	03	7	0.27228	49.3338			5	
	978			14	319				
-	-	0.18346	-	-	-	853.88	9.67	157.524	318
0.90936	0.24602 27	47	2.82877	1.36207	47.2544			3	
-	-	0.09885	-	-	-	853.17	9.67	158.201	317
0.90723	0.20957	922	9.19266	2.78839	45.9545			2	
95	32			88	383				
95 - 0.02421	32	0.11535	-	88 - 2 71471	383	853.05	9.9	162.162	317
95 - 0.03431 344	32 - 0.09197 694	0.11535 46	- 11.6659	88 - 3.71471 285	383 - 44.2112 111	853.05	9.9	162.162	317
95 - 0.03431 344 0.18278	32 - 0.09197 694 0.02136	0.11535 46 0.04192	- 11.6659 -	88 - 3.71471 285 -	383 - 44.2112 111 -	853.05 852.95	9.9	162.162	317 316
95 - 0.03431 344 0.18278 73	32 - 0.09197 694 0.02136 244	0.11535 46 0.04192 347	- 11.6659 - 10.5663	88 - 3.71471 285 - 3.71991	383 - 44.2112 111 - 42.5301	853.05 852.95	9.9	162.162 163.647	317 316
95 - 0.03431 344 0.18278 73	32 - 0.09197 694 0.02136 244	0.11535 46 0.04192 347	- 11.6659 - 10.5663	88 - 3.71471 285 - 3.71991 817	383 - 44.2112 111 - 42.5301 644	853.05 852.95	9.9	162.162	317 316
95 - 0.03431 344 0.18278 73 - 0.11286	32 - 0.09197 694 0.02136 244 0.04903 214	0.11535 46 0.04192 347	- 11.6659 - 10.5663	88 - 3.71471 285 - 3.71991 817 - 2.10082	383 - 44.2112 111 - 42.5301 644 -	853.05 852.95 852.77	9.9 9.9 9.9	162.162 163.647 165.734	317 316 316
95 - 0.03431 344 0.18278 73 - 0.11386 38	32 - 0.09197 694 0.02136 244 0.04903 214	0.11535 46 0.04192 347 - 0.06928 746	- 11.6659 - 10.5663 - 10.7636	88 - 3.71471 285 - 3.71991 817 - 3.19082 545	383 - 44.2112 111 - 42.5301 644 - 41.5841 022	853.05 852.95 852.77	9.9 9.9 9.9	162.162 163.647 165.734 4	317 316 316
95 - 0.03431 344 0.18278 73 - 0.11386 38 -	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100	0.11535 46 0.04192 347 - 0.06928 746 -	- 11.6659 - 10.5663 - 10.7636	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 -	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 -	853.05 852.95 852.77 853.32	9.9 9.9 9.96 10.21	162.162 163.647 165.734 4 173.365	317 316 316 316
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281	- 11.6659 - 10.5663 - 10.7636 - 12.5097	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082	853.05 852.95 852.77 853.32	9.9 9.9 9.96 10.21	162.162 163.647 165.734 4 173.365 8	317 316 316 316
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04	- 11.6659 - 10.5663 - 10.7636 - 12.5097	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777	853.05 852.95 852.77 853.32	9.9 9.9 9.96 10.21	162.162 163.647 165.734 4 173.365 8	317 316 316 316
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 -	- 11.6659 - 10.5663 - 10.7636 - 12.5097	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51862	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - - 42.0068	853.05 852.95 852.77 853.32 852.9	9.9 9.9 9.96 10.21 10.21	162.162 163.647 165.734 4 173.365 8 173.672	317 316 316 316 319
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305	853.05 852.95 852.77 853.32 852.9	9.9 9.9 9.96 10.21 10.21	162.162 163.647 165.734 4 173.365 8 173.672 1	317 316 316 316 319
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131	32 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 -	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 -	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 -	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 -	853.05 852.95 852.77 853.32 852.9 852.61	9.9 9.9 9.96 10.21 10.21 9.88999	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525	317 316 316 316 319 324
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388	853.05 852.95 852.77 853.32 852.9 852.61	9.9 9.9 9.96 10.21 10.21 9.88999 9	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6	317 316 316 316 317 318 319 324
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079	853.05 852.95 852.77 853.32 852.9 852.61	9.9 9.9 9.96 10.21 10.21 9.88999 9	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6	317 316 316 316 319 324
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 -	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77108	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - - 43.0162	853.05 852.95 852.77 853.32 852.9 852.61 852.81	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4	317 316 316 316 317 318 319 324 329
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675 382	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204 11	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 - 0.28904 88	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77198	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875 833	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - 43.0162 904	853.05 852.95 852.77 853.32 852.9 852.61 852.81	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4	317 316 316 316 317 318 319 324 329
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675 382 -	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204 11 -	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 - 0.28904 88 -	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77198 -	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875 833 -	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - 43.0162 904 -	853.05 852.95 852.77 853.32 852.9 852.61 852.81 852.04	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9 9.8	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4	317 316 316 316 319 324 329 330
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675 382 - 0.08938	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204 11 - 0.35989	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 - 0.28904 88 - 0.19087	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77198 - 4.79753	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875 833 - 5.16924	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - 43.0162 904 - 43.7800	853.05 852.95 852.77 853.32 852.9 852.61 852.81 852.04	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9 9.88999 9 9.8	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4	317 316 316 316 317 318 319 324 329 330
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675 382 - 0.08938 68	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204 11 - 0.35989 42	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 - 0.28904 88 - 0.19087 45	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77198 - 4.79753	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875 833 - 5.16924 07	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - 43.0162 904 - 43.7800 89	853.05 852.95 852.77 853.32 852.9 852.61 852.81 852.04	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9 9.88999 9 9.8	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4 171.206	317 316 316 316 317 318 319 324 329 330
95 - 0.03431 344 0.18278 73 - 0.11386 38 - 0.13035 92 0.49859 45 0.65131 - 0.01675 382 - 0.08938 68 0.85430 99	32 - 0.09197 694 0.02136 244 0.04903 214 0.06100 462 0.04158 261 - 0.03211 46 - 0.12204 11 - 0.35989 42 - 0.46578	0.11535 46 0.04192 347 - 0.06928 746 - 0.10281 04 - 0.10573 7 - 0.20577 36 - 0.28904 88 - 0.19087 45 -	- 11.6659 - 10.5663 - 10.7636 - 12.5097 - 10.6956 - 5.56217 - 3.77198 - 4.79753 - 1.70377	88 - 3.71471 285 - 3.71991 817 - 3.19082 545 - 2.83767 088 - 2.51863 137 - 2.66593 71 - 3.31875 833 - 5.16924 07 - 8,51280	383 - 44.2112 111 - 42.5301 644 - 41.5841 022 - 41.8082 777 - 42.0068 305 - 42.3388 079 - 43.0162 904 - 43.7800 89 -	853.05 852.95 852.77 853.32 852.9 852.61 852.81 852.04 851.34	9.9 9.9 9.96 10.21 10.21 9.88999 9 9.88999 9 9.8	162.162 163.647 165.734 4 173.365 8 173.672 1 168.525 6 171.690 4 171.206 190.423	317 316 316 316 317 318 319 324 329 330 327

	4	435		065	873				
1.09828 2	0.21079 35	0.13318 03	5.88688 9	- 9.64473	- 42.6382	850.95	10.9	190.75	324
- 0.29132	0.99938 01	0.38566 64	7.33072 6	- 4.95337	- 39.0592	851.18	11.2	197.008	328
- 1.23741 4	0.52819 7	0.63362 96	0.18145 5	0.87812 4284	- 33.7259 058	851.83	11.2	198.912	333
0.57628 25	- 0.52245 37	0.34469 39	- 1.96149	0.66475 9958	- 29.8375 85	851.19	11.05	198.237	333
0.67738 34	- 0.38836 21	- 0.51253 49	4.69174	- 3.12871 11	- 30.3844 16	850.58	10.61	190.873 9	330
- 1.33745	0.45928 87	- 0.72085 58	0.94921 7	- 2.24976 634	- 34.6229 916	850.33	10.61	191.722 7	329
- 0.94794 59	0.68197 67	0.20182 24	-8.2488	1.53844 0381	- 35.0020 261	850.84	9.80999 9	179.032 5	329
0.76491 54	0.32173 84	0.77011 57	- 6.62021	5.07920 8973	- 30.0986 074	850.14	9.80999 9	179.621 1	328
- 0.08991 891	0.07084 864	0.15366 65	- 2.79808	6.29921 259	- 26.0530 785	850.6	10.06	187.085 8	325
- 1.48723 9	0.22037 15	- 0.35503 04	- 9.63971	6.92555 8592	- 27.5168 023	849.84	9.4	174.999 8	324
- 0.25460 69	0.32040 81	- 0.15814 98	- 15.8085	8.22920 9463	- 29.7228 846	849.43	9.4	175.751 8	322
1.18820 9	0.19243 57	0.02196 936	- 10.7084	10.2389 0477	- 30.0644 362	849.47	8.92	168.677 2	330
0.37142 02	- 0.04009 624	- 0.26430 57	- 4.52163	10.8253 0415	- 30.4366 01	848.78	8.92	168.855 6	336
- 0.56402 87	- 0.21489 43	- 0.43298 45	- 6.50585	9.72248 6446	- 32.8566 314	848.47	8.51	162.455 9	333
0.11042 04	- 0.20052 73	- 0.21162 68	- 8.59923	7.68692 7828	- 34.5151 666	848.12	7.79	149.645 9	330
2.50252	- 1.72981 1	- 0.68573 66	- 0.08057	1.62224 1761	- 36.3111 716	848.75	7.79	150.580 7	330
- 2.46206 4	1.27394 9	0.73606 07	3.15800 7	0.16345 2311	- 35.2979 359	848.64	7.04	136.576	336
- 0.06251 526	- 0.59003 16	0.78448 27	0.13827	- 5.08635 204	- 27.3566 434	848.58	7.04	138.969 6	322
1.18980 5	0.73279 32	0.03713 449	4.20962 9	- 3.12336 827	- 23.7491 751	848.32	6.51	128.637 6	307

0.83675	0.38931	-	4.14922	-	-	849.18	6.1	121.268	319
02	63	0.69877	1	4.00781	30.8181				
		33		571	221				
-	-	0.98455	5.00655	-	-	848.44	6.1	121.878	325
0.76782	0.69326	59	3	5.52770	27.1172				
6/	09	0 50451	2 84668	601	6/4	010 07	5 21	106 800	220
- 0 18640	0.94450 60	0.39431	2.84008 A	- 3 01563	-	040.07	5.51	100.890	339
68	07	74	+	769	386			5	
-	1.26783	-	3.45946	-	-	848.72	5.31	107.739	337
1.13844		2.60931	5	4.94779	45.3721			9	
1		3		022	554				
1.97307	-	3.84624	11.7609	-	-	848.94	4.29	87.7305	338
1	3.50492	2	6	8.50021	45.9827				
	9	4.000.00		277	278	a (a -	1.0.1		2.11
0.50923	-	1.29929	25.5960	-	- 20 7772	848.7	4.04	82.7392	341
67	0.56342	9	0	13.4424	38.///3 652				
_	2 21312	1 23837	23 1202	521	033	848.07	4.04	83 /66/	3/13
- 0 76756	3	2	4	13 2170	- 29 7890	040.07	4.04	05.4004	545
07	5	2	7	764	727				
-	0.30098	0.09726	3.51325	-	-	848.18	4.13	85.491	345
3.01306	61	289		7.00351	18.7908				
4				523	556				
-	1.61689	0.63815	4.17923	-	-	848.08	4.13	86.2344	346
0.63905	4	25	2	9.21643	21.5803				
61				293	465				
1.12675	0.01923	0.21432	11.7107	-	-	848.5	3.85	80.696	348
	4	7	9	7.67830	22.0124				
	0 10929	0.20201	5 60472	481	/13	010 22	2.12	66 6061	240
- 0 58637	0.19828	0.59591 41	3.09472	-	- 17 3805	040.22	5.15	00.0004	549
73	07	41	5	375	326				
0.47624	0.07324	0.43568	8.90809	-	-	848.33	3.13	66.7003	350
59	314	47		9.17658	15.6197				
				372	806				
0.40760	0.30604	0.09806	8.62396	-	-	848.37	2.09	44.7051	350
37	12	105	6	9.77911	14.7951				
				186	224				
-	0.68623	0.36464	8.82611	-	-	848.16	2.09	44.7678	350
0.13594	36	8	1	10.2897	13.1663				
04	0 16502	0 14569	7 56295	570	982	919 77	1.02	11 6119	251
- 0.21815	21	0.14508 70	6	-	-	040.77	1.92	41.0440	551
0.21015 74	21	47	0	973	295				
-	0.84799	0.23880	5.90497	-	-	848.18	1.51	32,7821	351
0.21123	5	41	2	11.2609	10.1682				
99				583	877				
-	0.79771	0.02329	6.47022	-	-	848.26	1.51	33.069	350
0.48181	06	963	9	10.9354	9.14487				
78				667	623				
0.17693	-	0.12945	8.64448	-	-	849	1.21	26.5837	351
41	0.59402	55	4	12.0772	9.26481				
0.07010	25	0.06424	0.212/7	628	922	040 61	1.01	26.07.41	250
0.06918	0.62/16	0.26434	9.31367	-	- 8 15601	848.61	1.21	20.8/41	552
17	74	55		654	0.43004 56				
_	-	_	7 68055	-	-	848 26	1.03	22,9072	353
0 51800	0.63579	0.16639	1	12,1797	8.55038	0-10.20	1.05	22.9012	555
0.010.00			-		2.2.2.02.0		1	1	

12	31	75		305	096				
0 52786	_	_	8/6615	_	_	8/18/38	1.03	22 0381	355
0.52780	0.38383	0.25153	0.40015	12.1308	9.43203	040.50	1.05	22.7501	555
0.05022	92	51	0.15010	343	695	0.40.74	1.01	22.6614	250
0.05933	-	0.03367	8.17319	-	-	848.74	1.01	22.6644	358
/00	0.52885 9	511	/	002	989				
0.06678	-	0.06533	8.21172	-	-	848.87	0.39	8.7789	358
741	0.32477	63	3	11.8802	8.56672				
	5			283	171				
-	-	-	8.05338	-	-	848.63	0.39	8.8647	359
0.00797	0.33302	0.08046	0	11.2759 756	7.35014				
-	0.43135	0.43648	6 4 9 8 8 1	-	-	847.86	1.07	24 3425	359
0.17638	3	29	4	10.0490	5.97167	047.00	1.07	24.3423	557
67	-			151	554				
-	-	0.32101	5.73289	-	-	848.41	0.65	14.859	0
0.24556	0.39182	51		11.4087	3.98646				
1	08		4 91202	413	272	010 76	0.10	1 2022	1
- 0.21150	- 0.19653	- 0.12382	4.01293	-	- 1 87563	040.20	0.19	4.3633	1
6	65	87	5	131	922				
0.03486	-	-	3.50468	-	-	848.1	0.19	4.4156	2
083	0.04648	0.09562	1	11.6545	0.94733				
	156	69		173	014				
0.45629	0.13071	0.02755	5.89756	-	-	848.09	0.2	4.648	2
1/	1	651	9	10.8/49	0.85364				
0.02022	_	-	7 36129	-	-	848 39	0.09	2 1042	3
781	0.16966	0.04214	9	11.9235	0.20732	040.57	0.09	2.1042	5
	5	987		955	002				
-	0.09106	0.08183	6.45419	-	1.52771	848.43	0.09	2.13138	3
0.12583	882	171	2	11.8966	8622				
0.26400	0.00247	0.00885	6.06010	321	2 13141	818 2	0.06	1 42272	4
83	2541	922	4	-	4457	040.2	0.00	1.42272	+
				727					
-	-	-	7.15533	-	2.57261	848.25	0.06	1.43124	4
0.16175	0.00417	0.11558	2	11.1429	0866				
5/	883	1	6 87020	233	2 05500	847 50	0.02	0.71902	5
0.03213 44	0.02428 904	- 0.10094	8	- 11.0996	014	047.39	0.03	0.71802	5
	704	8	0	994	017				
-	-	0.20554	7.19908	-	3.66059	848.11	0.11	2.65914	6
0.01861	0.02067	72	3	11.1059	584				
62	423	0.0007.1	6.6627.5	733	2.002.55	0.40.47	0.11	0.66001	6
0.01889	0.01311	0.03074	6.66374	-	3.99266	848.47	0.11	2.66024	6
154	713)1/		747					
-	-	-	6.69296	-	4.38949	848.57	0.03	0.73452	7
0.05533	0.00258	0.01501	1	10.9330	212				
177	25	227		603					_
-	-	-	6.41051	-	5.00264	848.31	0.03	0.73632	7
0.02792 812	0.00072	0.00357	5	10.9462	/488				
0.01650	-	0.01771	6.02667	-	5.62923	848.27	0.01	0.24594	8
304	0.00018	248	4	10.9085	1268	0.0.27	0.01	0.21091	Ŭ
	801			893					

- 0.02074	7.80E- 05	0.00813 4504	5.97867 7	- 10.8647	6.26501 2739	848.53	0.04	0.98696	9
464	0.00194	0.01398	5 69302	867	6 89762	848 27	0.04	0.99216	9
652	0432	771	3	10.8938 586	69	040.27	0.04	0.99210	,
- 0.02101	- 0.00072	0.00946 4778	5.55356 8	- 10.8737	7.51983 0417	847.94	0.04	0.99576	10
07	012	0.01292	5.42686	-	8.12181	847.95	0.04	1.00256	10
543	8323	349	4	10.8059 324	9984				
- 0.01196 483	0.00034 41	0.01079 505	5.27112 2	- 10.7473 819	8.72499 5573	848.54	0.08	2.01072	11
0.00798 929	0.00194 0432	0.01185 927	5.16046	- 10.6903 554	9.32686 4818	848.29	0.09	2.28546	12
- 0.00105 658	0.00061 0157	0.01185 927	4.95413 9	- 10.6727 656	9.92189 8677	847.99	0.09	2.29626	12
- 0.00185 474	0.00167 4375	0.01185 927	4.82423 9	- 10.6285 906	10.5169 8983	848.32	0.05	1.2787	13
0.00532 874	0.00167 4375	0.01159 322	4.65099 9	- 10.5666 481	11.0970 0074	848.49	0.05	1.2812	13
- 0.00504 74	0.00061 0157	0.01185 927	4.52990 3	- 10.4660 711	11.6793 7796	848.31	0.08	2.06832	14
0.00559 479	0.00061 0157	0.01185 927	4.42446 5	- 10.3691 152	12.2531 4362	848.26	0.07	1.80978	14
- 0.00158 869	0.00140 8323	0.01079 505	4.35844 8	- 10.3438 133	12.8099 6693	847.94	0.07	1.82588	15
0.00080 581	0.00061 0157	0.01185 927	4.26151 9	- 10.3083 473	13.3671 9703	847.93	0.08	2.09072	15
0.00187 003	0.00167 4375	0.01185 927	4.08947 1	- 10.2585 744	13.9206 0551	848.27	0.08	2.09952	16
- 0.00132 263	0.00114 2266	0.01106 111	4.00611 2	- 10.2638 456	14.4687 1985	848.51	0.04	1.05736	16
0.00240 214	0.00140 8323	0.01239 138	3.92279 1	- 10.2689 278	15.0034 7855	848.23	0.04	1.06576	17
- 0.00079 052	0.00061 0157	0.01159 322	3.80120 5	- 10.2319 662	15.5362 6054	848.36	0.04	1.06816	17
0.00133 792	0.00140 8323	0.01185 927	3.67907 5	- 10.1383 736	16.0612 2739	848.18	0.08	2.13952	18
0.00053 975	0.00087 6213	0.01159 322	3.54234 9	- 9.99468 724	16.5807 3396	848.05	0.08	2.14672	18
0.00027 37	0.00087 6213	0.01159 322	3.48026 6	- 9.96864	17.0908 2109	847.94	0.03	0.80802	19
		-	-				1		

				0.77	1	1	1	1	1
				057					
0.00133 792	0.00167 4375	0.01185 927	3.42924 6	- 9.96727 12	17.5891 6259	847.84	0.08	2.17312	19
0.00053 975	0.00061 0157	0.01132 716	3.33742 9	- 9.95276 964	18.0865 1861	848.02	0.08	2.17552	20
0.00027 37	0.00140 8323	0.01185 927	3.27146 6	- 9.89252 886	18.5674 3646	848.31	0.01	0.27454	20
0.00027 37	0.00114 2266	0.01185 927	3.22857 1	- 9.79275 399	19.0385 3955	848.26	0.01	0.27572	21
0.00025 613	0.00136 6466	0.01208 347	3.12936 1	- 9.77197 854	19.5258 5734	848	0.04	1.10568	21
0.00052 218	0.00163 2523	0.01208 347	3.01682 8	- 9.75255 527	20.0027 1293	847.79	0.12	3.32184	22
0.00025 613	0.00136 6466	0.01261 558	2.90055 2	- 9.64772 691	20.4761 1358	848.36	0.12	3.33624	22
0.00025 613	0.00136 6466	0.01208 347	2.81584 4	- 9.57621 032	20.9325 1457	848.4	0.16	4.47232	22
0.00052 218	0.00243 0685	0.01208 347	2.78867 2	- 9.56412 664	21.3729 816	847.82	0.16	4.49952	23
0.00025 613	0.00136 6466	0.01234 953	2.73270 7	- 9.50883 048	21.8210 1741	847.93	0.04	1.12888	23
0.00105 429	0.00216 4632	0.01261 558	2.68225 5	- 9.44649 268	22.2559 4967	848.36	0.04	1.13168	24
0.00025 613	0.00163 2523	0.01261 558	2.72977 9	- 9.48768 261	22.6684 1626	847.87	0.04	1.13488	24
0.00025 613	0.00243 0685	0.01234 953	2.72173	- 9.51017 693	23.0828 309	848.4	0.05	1.43015	24
0.00105 429	0.00243 0685	0.01181 742	2.60895 2	- 9.50620 634	23.5039 6634	847.89	0.05	1.43315	25
0.00105 429	0.00216 4632	0.01261 558	2.56579 8	- 9.39569 424	23.9168 34	847.83	0.06	1.72818	25
0.00052 218	0.00163 2523	0.01155 136	2.55832 4	- 9.23234 397	24.3091 5539	848.38	0.06	1.73118	26
0.00052 218	0.00136 6466	0.01261 558	2.52368	- 9.19493 556	24.7019 8098	848.39	0.09	2.61027	26
0.00078 824	0.00136 6466	0.01208 347	2.49171 6	- 9.15463 37	25.0892 8899	848.46	0.04	1.17132	26
0.00025 613	0.00136 6466	0.01261 558	2.46506 8	- 9.11166 76	25.4680 3701	847.89	0.04	1.17412	27

0.00105 429	0.00163 2523	0.01181 742	2.38409 1	- 9.02539 734	25.8564 3937	848.39	0.06	1.76298	27
0.00052 218	0.00243 0685	0.01181 742	2.29300 6	- 8.92420 154	26.2347 1757	848.5	0.06	1.76718	27
0.00132 035	0.00216 4632	0.01208 347	2.27697 4	- 8.97114 97	26.5965 576	848.25	0.06	1.78398	28
0.00052 218	0.00163 2523	0.01261 558	2.25920 4	- 8.97962 948	26.9513 6172	847.92	0.05	1.49165	28
0.00078 824	0.00136 6466	0.01181 742	2.23612 8	- 8.90531 685	27.2971 5321	848.36	0.05	1.49365	28
0.00078 824	0.00189 8576	0.01208 347	2.19667 1	- 8.84181 594	27.6492 8161	848.47	0.11	3.29373	29
0.00025 613	0.00136 6466	0.01261 558	2.14385 7	- 8.78352 894	27.9935 6622	848.29	0.11	3.31573	29
0.00025 613	0.00243 0685	0.01208 347	2.13303 7	- 8.76053 614	28.3241 686	847.94	0.03	0.90759	29
0.00132 035	0.00136 6466	0.01181 742	2.14457 2	- 8.73487 337	28.6412 8928	848.04	0.02	0.60606	30

A.3 TURNING FLIGHT

Roll (rad)	Pitch (rad)	Yaw ()	Roll_S peed	Pitch_ Speed	Yaw_ Speed	Time (s)	alt (m)	Groun d	Horiz ontal	headin g
			(rad/s)	(rad/s)	(rad/s)			speed (m/s)	(m)	(deg)
0.0281 4	0.1204 76	- 0.4557	- 1.0149	- 0.0706	0.2355 731	0.214	923.61	7.89	1.6884 6	332
		315	97	3115						
- 0.1180 5	0.1057 25	- 0.4287 874	- 1.3555 47	- 0.1326 219	0.0080 96121	0.234	924.35	8	1.872	334
- 0.2537 8	0.0830 36	- 0.4036 788	- 0.8628 131	- 0.2321 265	0.0493 3463	0.344	923.52	7.74	2.6625 6	335
- 0.2901 2	0.0743 04	- 0.3807 518	- 0.0449 6038	- 0.0820 7152	- 0.0158 4882	0.454	923.88	7.74	3.5139 6	337
- 0.2865 2	0.0658 26	- 0.3942 295	0.0329 937	- 0.0086 40368	- 0.1150 873	0.604	923.77	7.84	4.7353 6	338
- 0.2893 7	0.0596 87	- 0.4226 471	0.0513 5149	- 0.0387 0457	- 0.1773 441	0.704	924.27	7.84	5.5193 6	336
- 0.2631 4	0.0484 07	- 0.4443 317	0.4004 155	0.0317 9997	- 0.1488 762	0.964	923.35	7.87	7.5866 8	335
- 0.1942 9	0.0590 89	- 0.4686 809	0.6983 97	0.1956 898	- 0.0222 3413	0.994	923.27	7.89	7.8426 6	333

_	0.000/	_	0.5206	0.3771	_	1 214	023 47	7 80	0 578/	332
0 1212	53	0 4925	723	392	0.0812	1.217	723.47	7.07	6	552
0.1212	55	132	123	392	0.0812				0	
1	0 1077	432	0.4025	0.1565	9032	1.264	022.00	7.05	10.042	221
-	0.12//	-	0.4025	0.1505	-	1.304	925.98	7.95	10.845	331
0.0729	95	0.5155	439	/9/	0.0432				8	
1	0 1 0 7 7	786			5247					
-	0.1275	-	0.5392	-	-	1.444	923.85	7.93	11.450	329
0.0186	42	0.5417	962	0.1089	0.1704				92	
4		443		431	267					
0.0451	0.1021	-	0.4682	-	-	1.504	923.98	7.93	11.926	328
94	21	0.5739	595	0.2600	0.1959				72	
		414		622	68					
0.0915	0.0798	-	0.3961	-	-	1.594	923.7	8.01	12.767	325
09	08	0.6140	586	0.1398	0.2007				94	
07	00	01	200	054	57				<i></i>	
0.1000	0.0926	01		0.1246	51	1 744	024.99	8.01	12 060	222
0.1090	0.0830	-	-	0.1240 521	-	1./44	924.00	0.01	13.909	323
09	32	0.0421	0.0127	331	0.1110				44	
		301	6//4		286					
0.0945	0.0980	-	-	0.0927	0.1522	1.894	924.05	7.96	15.076	322
17	7	0.6507	0.1567	2654	979				24	
		9	034							
0.0578	0.1062	-	-	0.0911	0.2251	1.934	924.65	7.85	15.181	322
56	56	0.6374	0.4094	302	969				9	
		68	556							
-	0.1093	-	-	-	0.3497	2.024	923.46	7.85	15.888	324
0.0060	76	0.6126	0 6890	0.0142	106		/20110	1.00	4	02.
7	10	323	792	2752	100					
/	0.1031	525	172	2152	0.2331	2 205	024.05	7.88	18 08/	325
-	2	-	-	-	796	2.295	924.93	7.00	6	525
0.0922	3	0.5915	0.0620	0.0945	/00				0	
9	0.0700	303	939	/01	0.0007	0.005	024.24	7 .00	10.001	22.6
-	0.0799	-	-	-	0.0807	2.325	924.24	7.88	18.321	326
0.1609	51	0.5803	0.4906	0.1621	291					
7		589	023	54						
-	0.0626	-	-	-	-	2.445	923.72	7.87	19.242	326
0.2159	53	0.6027	0.2884	0.0291	0.1422				15	
7		073	006	266	249					
-	0.0584	-	-	-	-	2.615	924.24	7.87	20.580	325
0.2386	45	0.6107	0.4097	0.0073	0.0823				05	
		597	216	10097	6254					
-	0.0538	-	0.0103	-	0.1876	2.645	924.81	7.87	20.816	324
0 2654	1	0.6108	7904	0 0940	832	210.10	/201	/10/	15	02.
7	1	809	1704	4399	052				15	
/	0.0472	007	0.7518	ч377	0.1467	2 755	022 50	7.02	21.847	225
-	0.0472 50	-	0.7510	-	0.1407	2.155	923.39	1.95	21.04/	323
0.2130	39	0.5982	74	0.0599	107				15	
		869		8896						
-	0.0413	-	0.7247	-	0.0267	2.855	924.12	7.93	22.640	325
0.1169	75	0.5995	364	0.0557	1996				15	
7		344		3208						
-	0.0424	-	0.3331	0.1007	-	3.115	924.17	8.02	24.982	324
0.0627	98	0.6308	036	082	0.1808				3	
		725			028					
-	0.0546	-	0.4216	0.1483	0.0046	3.325	923.79	8.16	27.132	322
0.0254	94	0.6516	999	32	37408					
9	· · ·	53			27.100					
0.0691	0.0745		1.0027	0.1547	0.1520	3 255	022 12	8 16	27 276	377
0.0001	20	-	6/	172	0.1550	5.555	943.13	0.10	21.370	522
07	29	0.04/3	04	1/3	90				0	
0.1700	0.0070	138	0.7051	0.1612		2 207	024.02	0.00	07.004	202
0.1799	0.0958	-	0.7851	0.1613	-	3.385	924.02	8.09	27.384	322
75	91	0.6541	309	687	0.1842				65	

		491			615					
0.2269	0.1162	-	-	0.0597	-	3.535	923.45	8.01	28.315	320
72	32	0.7139	0.0587	3573	0.5181	0.000	20110	0.01	35	020
		521	9522		605					
0.1806	0.1292	-	-	0.0419	-	3.605	924.08	8.01	28.876	317
76	59	0.7647	0.4847	1006	0.4665				05	
		652	491		458					
0.1007	0.1302	-	-	-	-	3.805	923.76	8.01	30.478	314
61	32	0.7890	0.6667	0.0589	0.1220				05	
		325	306	2474	047					
0.0188	0.0935	-	-	-	0.2073	3.925	924.35	8.01	31.439	315
1	78	0.7746	0.7406	0.4396	712				25	
		029	939	493						
-	0.0347	-	-	-	0.2028	3.975	924.17	7.99	31.760	317
0.0736	43	0.7369	0.7526	0.4699	483				25	
3	0.0045	334	664	795	0.4142	4 205	022.97	8.02	22 724	220
-	0.0043	-	-	-	0.4145 610	4.205	925.87	8.02	35.724	520
0.1052	24	382	131	2473	019				1	
-	0.0389	-	-	0 3082	0 5064	4 385	923 33	8.02	35 167	323
0 2199	52	0 6247	0 2546	31	169	ч.505	125.55	0.02	7	525
4	52	487	116	51	10)				,	
-	0.0869	-	-	0.1970	0.3893	4.435	923.63	7.96	35.302	327
0.2289	28	0.5604	0.1096	201	527		/20100	1120	6	027
5		17	117							
-	0.1004	-	-	-	0.1640	4.455	923.12	7.96	35.461	329
0.2388	4	0.5216	0.0949	0.0522	043				8	
8		592	787	7337						
-	0.1190	-	0.5653	0.3098	-	4.635	923.8	7.84	36.338	330
0.2069	11	0.5094	695	273	0.0467				4	
9		005			1118					
-	0.1686	-	0.7124	0.3228	-	4.715	924.17	7.86	37.059	330
0.0958	86	0.5154	9/9	64	0.1214				9	
1	0.1940	411	0.7510		720	1 925	022 72	7 96	28 002	220
-	0.1640	-	0.7510	-	- 0.2220	4.855	925.15	7.80	38.005	529
5	97	822	139	1556	0.2329 496				1	
0.0950	0.1562	-	0 9474	-	-	4 985	924 71	7 52	37 487	328
12	12	0 5633	244	0 1829	0 3710	4.705	724.71	1.52	2	520
		965		063	321				-	
0.2057	0.1486	-	0.8332	0.0485	-	5.075	923.84	7.55	38.316	326
03	33	0.5888	868	6143	0.2002				25	
		592			248					
0.3135	0.1585	-	0.6316	0.1794	0.2294	5.245	924.52	7.55	39.599	326
	19	0.5776	172	604	538				75	
		109								
0.3755	0.1503	-	0.2801	0.1238	0.6218	5.565	924.51	7.29	40.568	329
83	22	0.5149	587	55	847				85	
0.4054	0.1174	143	0.2021	0.1701	0.0007	5.005	024.25	7.10	40.000	225
0.4254	0.11/4	-	0.3921	0.1501	0.9086	5.605	924.35	7.19	40.299	333
	23	128	078	944	919				93	
0.5102	0.0786	420	0.4365	0 1847	0.6005	5 665	02/ 22	7 10	40.731	342
23	68	0 2992	99	815	269	5.005	724.23	1.17	35	572
20	00	465		015	207					
0.4854	0.0718	-	-	0.2084	0.1562	5.745	923.75	7.07	40.617	345
82	53	0.2455	0.7457	604	887				15	
		837	489							

0.3170	0.0627	-	-	-	0.0474	5.895	925.19	7.07	41.677	346
02	54	0.2281 255	1.7469 13	0.0791 4492	7224				65	
0.0934	0.0057	-	-	-	0.1517	6.195	924.66	7.15	44.294	348
84	7	0.2022	1.1932	0.3771	658				25	
0.0080	-	-	-	-	0.1719	6.235	925.13	7.32	45.640	349
36	0.0404	0.1727	0.3631	0.1738	859		,		2	• • •
	8	907	62	604	0.010.7			5 .01	14044	
-	-	-	-	0.0405	0.2185	6.425	924.67	7.31	46.966	351
0.1189	0.0455 8	0.1302	0.7480	1918	433				75	
-	-	-	0.1630	-	0.3547	6.455	924.72	7.31	47.186	353
0.1538	0.0471	0.1158	946	0.0924	656				05	
	4	141	0.5710	4766	0.1740	6.505	024.65	7.21	48.200	254
- 0.0874	- 0.0658	- 0.0883	0.5712	- 0.1874	0.1749	6.595	924.65	7.31	48.209	354
9	2	9322	227	292	125				-15	
-	-	-	-	0.0605	-	6.745	924.14	7.56	50.992	355
0.0649	0.0740	0.0906	0.0361	339	0.0416				2	
4	9	3776	8057	0.2112	5614	6.015	024.58	7.56	52 277	254
- 0.0625	- 0.0566	- 0.1049	0.2022	0.2113 87	0.1008	0.915	924.30	7.50	4	554
2	2	792							-	
0.0116	-	-	0.7917	0.1451	0.2033	6.925	924.38	7.52	52.076	354
28	0.0245	0.0942	823	394	804					
0 1079	5	-	0.6888	_	0.0280	7 197	924 79	7 52	54 121	355
16	0.0187	0.0823	19	0.0126	5024	1.171	24.19	1.52	44	555
	2	6877		3119						
0.1609	-	-	0.1050	-	-	7.387	924.78	7.64	56.436	354
93	0.0337	0.0942	946	0.1036	0.1597				68	
0.1890	-	-	0.3599	-	0.1507	7.457	923.88	7.82	58.313	354
46	0.0426	0.0928	751	0.0083	015		/		74	
	6	267		74316						
0.2531	-	-	0.7247	0.0887	0.3507	7.467	924.55	7.82	58.391	356
10	4	9285	304	3371	/40				94	
0.3522	-	0.0138	0.6284	0.2457	0.3858	7.727	924.82	7.89	60.966	0
55	0.0488	524	245	081	94				03	
0.2010	7	0.0771		0.2265	0.2008	7717	024 72	0.12	62 082	2
0.3910	- 0.0456	2423	- 0.0300	0.2205 521	0.3098	1.141	924.72	8.15	02.985	3
15	7	2123	613	521	021					
0.3394	-	0.1356	-	0.1648	0.2414	7.977	923.7	8.13	64.853	6
56	0.0498	741	0.5057	274	263				01	
0.2753	8	0.1701	6/4	0.0791	0.3457	7 997	92/ 10	82	65 575	0
42	0.0515	422	0.6648	5774	198	1.771)24.1)	0.2	4	,
	3		682							
0.1597	-	0.2277	-	-	0.3425	8.197	924.56	8.42	69.018	13
58	0.0663	133	0.7920	0.0413	271				74	
0.0340	-	0.2875	-	-	0.3018	8.347	924 17	8.69	72,535	16
3	0.0928	325	0.5757	0.0921	207	0.0 + /	/2 1.1 /	0.07	43	10
	3		399	816						
-	-	0.3209	-	-	0.2243	8.497	924.36	8.69	73.838	18
0.0181	0.1073	488	0.3256	0.0860	987				93	

5			483	6233						
_	_	0.3402	_	_	0.1/150	8 577	02/18	8.95	76 764	10
- 0.0920	0 1344	644 644	0 7321	0 1823	126	0.577	924.10	0.95	15	19
0.0720 7	0.1544	044	801	742	120				15	
-	-	0.3702	-	0.0400	0.4300	8.757	924.24	9.08	79.513	21
0.1603	0.1427	455	0.0678	4767	591				56	
6	8		411							
-	-	0.4270	0.5757	0.2462	0.6048	8.817	924.53	9.08	80.058	24
0.1249	0.1094	379	457	402	572				36	
8	1									
-	-	0.5059	0.0888	-	0.4814	9.077	924.53	9.26	84.053	28
0.0856	0.0912	074	6523	0.0320	077				02	
8	2			532						
-	-	0.5424	0.7875	0.0706	0.0275	9.287	923.33	9.4299	87.576	31
0.0346	0.0946	39	254	4398	1813			99	40071	
1	4	0.5007	0.6625			0.227	000 70	0.4000	07.052	20
0.0833	-	0.5227	0.0035	-	-	9.327	923.78	9.4299	87.953	29
22	0.0897	0/9	438	0.0594	0.2270			99	00007	
0.0634	0	0.4703		5065	265	0.307	023 53	0.58	00.023	26
6/	-	385	-	-	- 0.1746	9.391	925.55	9.30	90.023 26	20
04	8	505	756	356	836				20	
0.0271	-	0 5089	0.5009	0.0403	0 7799	9 597	923.6	9.84	94 434	29
54	0.1186	482	843	1373	213	2.027	>25.0	2.01	48	2,
	6									
0.1662	-	0.6360	1.6404	0.1193	1.0885	9.657	924.38	9.84	95.024	36
	0.1194	769	97	32	45				88	
	4									
0.3348	-	0.7332	0.5291	0.2603	0.4681	9.787	923.42	9.9299	97.184	42
44	0.1312	773	861	411	05			99	90021	
	6									
0.3245	-	0.7680	-	0.2989	0.2408	9.987	923.62	10.28	102.66	44
91	0.1151	477	0.3006	191	941				636	
0.0046		0.0005	391		0.0.151	10.105	000.10	10.00	10100	
0.3046	-	0.8025	0.1745	0.2289	0.2451	10.197	923.18	10.28	104.82	45
09	0.0981	115	349	466	51				516	
0.2402	4	0.8412	0.2055	0.1714	0.1402	10.267	022.01	10.74	110.26	19
0.3492	-	103	0.2933 800	0.1714 788	254	10.207	922.91	10.74	758	40
23	8	493	099	/00	234				130	
0 2814	-	0.8531	-	0.1211	0.0386	10 357	923.42	11 12	115.16	48
93	0.0825	324	0.8580	944	9243	10.007	>25.12	11.12	984	10
20	8	021	241	2.1.	/2.0				201	
0.1705	-	0.8803	-	0.1360	0.4226	10.497	923.93	11.24	117.98	50
15	0.0820	326	0.7308	935	096				628	
	7		498							
0.1354	-	0.9636	0.0721	0.1039	0.7102	10.667	923.24	11.24	119.89	55
61	0.0769	254	0377	008	149				708	
0.1112	-	1.0372	-	0.0592	0.5742	10.817	922.8	11.55	124.93	59
75	0.0780	13	0.3589	0362	609				635	
	4		051							
0.0428	-	1.0900	-	0.1709	0.4811	10.867	923.26	11.84	128.66	62
84	0.0758	22	0.5007	467	417				528	
0.0151	3		124	0.0770	0.5000			44.01	101.55	
0.0496	-	1.1639	0.5289	0.2728	0.5303	11.147	922.32	11.84	131.98	66
41	0.0528	58	2	457	618				048	
0.1520	2	1 2020	0.5966	0 1010	0.1594	11.267	022.42	11.01	122.06	69
0.1530 80	-	1.2039	0.5800	0.1810	0.1584	11.207	923.42	11.81	155.06	60
07	0.0323	50	557	500	1/1				541	

	7									
0.1734	-	1.1848	-	0.1331	-	11.297	923.03	12.33	139.29	67
5	0.0148 6	18	0.1670 796	669	0.1467 478				201	
0.1362 87	- 0.0063	1.1720 25	0.0282 0471	0.1571 118	0.1698 575	11.547	922.71	12.33	142.37 451	67
0.2160	0.0023	1.2369	0.6912	0.2459	0.5314	11.577	923.79	12.33	142.74	70
0.2591 51	0.0113	1.2883 52	- 0.0409	0.1773	0.4037 197	11.757	922.36	12.63	148.49 091	73
0.1955	0.0196	1.3227	6955 -	0.1124	0.3252	11.797	923.08	12.63	148.99	75
81	36	23	0.4235 565	146	335				611	
0.1880 7	0.0145 95	1.3774 21	0.1995 441	0.0714 4215	0.4013 252	11.987	923.43	12.53	150.19 711	78
0.1767 31	0.0200 99	1.4048 84	- 0.4381 895	0.1669 559	0.3039 491	12.037	922.5	12.7	152.86 99	80
0.0976 84	0.0398 98	1.4339 59	- 0.5472 72	0.3095 613	0.3619 491	12.216	922.94	12.7	155.14 32	82
0.0664 36	0.0891 51	1.4896 27	- 0.1024 282	0.4266 254	0.4625 179	12.316	922.87	12.83	158.01 428	85
0.0531 59	0.1213 9	1.5292 91	- 0.2365 199	0.2539 558	0.2730 868	12.486	923.9	12.78	159.57 108	88
0.0206 8	0.1319 23	1.5434 39	- 0.3147 4	0.0940 5681	0.0578 4838	12.576	923.38	12.78	160.72 128	88
- 0.0094 8	0.1375 79	1.5419 48	- 0.3115 474	0.0264 7888	0.1086 649	12.776	924.53	12.71	162.38 296	88
- 0.0417 6	0.1241 84	1.5532 53	- 0.2532 814	- 0.1807 779	0.1791 694	12.876	923.47	12.59	162.10 884	89
- 0.0485	0.0752 16	1.5879 4	0.1266 45	- 0.3279 062	0.2526 006	12.976	924.79	12.59	163.36 784	91
0.0117 51	0.0418 61	1.6266 35	0.3437 458	0.0682 4949	0.1855 547	13.146	924.51	12.5	164.32 5	93
0.0421 76	0.0733 13	1.6584 4	- 0.0023 91596	0.3603 777	0.2486 097	13.296	923.63	12.42	165.13 632	95
0.0227 39	0.0997 87	1.6971 28	- 0.3618 318	0.1709 467	0.4098 39	13.486	923.68	12.42	167.49 612	97
- 0.0016 9	0.1027 29	1.7476 99	- 0.0579 9707	- 0.0469 5227	0.3819 032	13.706	924.04	12.25	167.89 85	100
0.0043 12	0.0900 72	1.7806 55	- 0.0055 84254	- 0.0567 963	0.1546 924	13.796	924.46	12.35	170.38 06	102
- 0.0190 8	0.0867 41	1.7932 8	- 0.3775 29	0.0788 9169	0.0437 4747	13.906	923.99	12.35	171.73 91	102

- 0.0631 2	0.0924 77	1.8097 93	- 0.2868 043	0.0331 3025	0.1645 364	13.936	924.04	12.36	172.24 896	103
- 0.0902 5	0.0860 37	1.8336 44	- 0.2777 584	- 0.1302 274	0.1839 584	14.176	924.12	12.25	173.65 6	105
- 0.1238	0.0652 52	1.8530 04	- 0.3064 923	- 0.1485 852	0.0929 6762	14.256	924.08	12.23	174.35 088	107
- 0.1389 9	0.0579 4	1.8845 81	0.0111 772	0.0669 1922	0.2084 354	14.436	924.08	12.23	176.55 228	108
- 0.1085 7	0.0847 67	1.9180 38	0.2697 825	0.2800 292	0.3292 243	14.456	923.62	12.15	175.64 04	110
- 0.0798	0.1115 09	1.9462 46	0.0548 102	0.0320 6603	0.1163 805	14.606	924.16	12.15	177.46 29	111
- 0.1092 1	0.1005 44	1.9459 65	- 0.3487 951	- 0.0895 2106	- 0.0703 9007	14.776	925.23	11.95	176.57 32	111
- 0.1700 8	0.0948 63	1.9515 6	- 0.3150 061	- 0.0070 44037	0.0293 8051	14.936	924.44	12.05	179.97 88	112
- 0.1590 3	0.0913 91	1.9776 06	0.2979 844	- 0.0847 3206	0.1882 153	15.046	925.62	12.05	181.30 43	113
- 0.0729 1	0.0759 07	2.0163 52	0.5877 181	- 0.1328 88	0.2273 254	15.166	925.26	11.92	180.77 872	115
0.0035 02	0.0658 19	2.0441 45	0.1859 753	0.0145 0641	0.1230 318	15.366	925.16	11.95	183.62 37	117
0.0258 75	0.0626 4	2.0654 35	0.2155 074	- 0.0339 1558	0.1629 401	15.456	924.83	11.94	184.54 464	118
0.0730 74	0.0510 85	2.1035 02	0.4475 072	- 0.0562 642	0.2794 721	15.576	926.07	11.94	185.97 744	120
0.1345 37	0.0352 19	2.1507 87	0.4879 475	- 0.0360 4402	0.3983 986	15.676	925.37	12.08	189.36 608	123
0.2011 88	0.0216 47	2.2089 9	0.5169 476	0.0419 1006	0.5090 774	15.966	925.77	12.08	192.86 928	127
0.2618 49	0.0078 21	2.2803 69	0.4179 751	0.0286 0731	0.4489 49	16.036	924.62	12.08	193.71 488	131
0.3040 62	- 0.0159 1	2.3349 72	0.2474 339	- 0.0208 7889	0.2709 583	16.116	925.54	12.1	195.00 36	134
0.2965 39	- 0.0343	2.3756 43	- 0.2993 088	0.0576 073	0.3185 821	16.386	925.29	12.1	198.27 06	136
0.2571 96	- 0.0319 6	2.4512 57	- 0.0949 787	0.3329 741	0.6173 618	16.416	923.48	12.27	201.42 432	141
0.2605 57	- 0.0053 1	2.5633 4	0.0875 3495	0.3859 19	0.7203 25	16.586	924.37	12.29	203.84 194	147
0.2282 03	- 0.0057 4	2.6502 41	- 0.4778 317	0.0254 1466	0.3643 436	16.736	925	12.45	208.36 32	152

0.1475 39	- 0.0290 4	2.6860 48	- 0.4054 647	- 0.0344 4769	0.0905 7313	16.806	925.24	12.45	209.23 47	154
0.1199 45	- 0.0302	2.7170 01	- 0.0335 2002	0.1946 256	0.1953 988	16.996	924.97	12.81	217.71 876	156
0.1104 25	- 0.0167 7	2.7689 77	- 0.0923 1815	0.1709 467	0.4199 491	17.106	924.23	12.84	219.64 104	160
0.1271	- 0.0135 5	2.8394 56	0.2019 386	0.0610 6601	0.3781 784	17.298	924.74	12.84	222.10 632	163
0.1217	- 0.0260 9	2.8965 39	- 0.2351 896	- 0.0019 88997	0.3239 033	17.408	924.05	12.75	221.95 2	166
0.1080 75	- 0.0302 1	2.9462 98	0.0633 2395	0.1023 045	0.3968 023	17.458	923.72	12.78	223.11 324	170
0.1497 78	- 0.0274 7	3.0274 5	0.4288 833	0.1571 118	0.5000 316	17.618	924.21	12.78	225.15 804	177
0.1969 64	- 0.0218 4	3.0987 41	0.2351 954	0.2100 568	0.3590 225	17.818	923.05	12.78	227.71 404	178
0.2333 37	- 0.0088 3	- 3.1261 66	0.2181 679	0.2491 668	0.2044 446	17.988	924.26	12.49	224.67 012	181
0.2520 34	- 0.0057 1	- 3.0975 75	0.0013 33173	- 0.0089 06421	0.1991 235	18.028	923.63	12.46	224.62 888	182
0.2431 16	- 0.0224 9	- 3.0770 68	0.0593 3313	- 0.0019 88997	0.2049 767	18.138	923.91	12.46	225.99 948	184
0.2343 32	- 0.0182 1	- 3.0232 9	- 0.1167 952	0.2355 98	0.4635 821	18.488	923.52	12.7	234.79 76	188
0.1676 58	- 0.0054 7	- 2.8823 97	- 0.2950 52	0.1467 357	0.4992 334	18.658	923.5	12.53	233.78 474	195
0.1502 64	- 0.0068 2	- 2.8202 79	- 0.0968 4108	0.1709 467	0.4816 738	18.698	923.34	12.53	234.28 594	199
0.1407 11	0.0097 54	- 2.7691 96	- 0.0800 7962	0.2869 466	0.4665 087	19.168	923.74	12.52	239.98 336	202
0.1096 59	0.0563 55	- 2.6954 14	- 0.1449 97	0.5569 923	0.5966 095	19.238	922.44	11.79	226.81 602	149
0.1478 02	0.1148 07	2.6369 56	0.0920 5788	0.3223 319	0.3805 729	20.018	923	11.44	229.00 592	152
0.2254 08	0.1203 76	2.7274 55	0.7135 621	0.0538 8253	0.8663 892	20.058	923.31	11.44	229.46 352	158
0.3167 67	0.0903 93	2.8215 3	0.6286 906	- 0.0379 064	0.7115 452	20.148	923.08	11.05	222.63 54	163
0.3834 74	0.0811 56	2.8977 63	0.2796 266	0.2571 484	0.5614 902	20.188	923.01	11.05	223.07 74	167
0.4146 16	0.1106 57	2.9744 41	0.1295 716	0.5184 144	0.4888 573	20.328	922.77	10.69	217.30 632	171

0.4233 98	0.1393 51	3.0478 6	- 0.1880 979	0.3401 576	0.3683 344	20.328	922.68	10.58	215.07 024	180
0.2100 61	0.1822 25	3.1400 29	- 0.9285 286	0.2728 457	0.2954 354	20.818	922.16	9.71	202.14 278	185
0.1119 39	0.2014 97	- 3.0992 62	- 0.8660 057	0.1219 926	0.3747 197	20.818	921.89	9.71	202.14 278	186
- 0.0273 7	0.1849 27	- 3.0322 53	- 0.4262 17	- 0.0841 9996	0.1749 125	21.028	921.43	9.6399 99	202.70 9899	187
- 0.0896 7	0.1925 93	- 3.0143 45	- 0.6020 793	0.1238 55	0.1605 456	21.068	921.6	9.6399 99	203.09 54989	189
- 0.1312 4	0.2065 18	- 2.9853 4	- 0.1625 566	0.0780 9352	0.3489 124	21.238	921.39	9.37	199.00 006	191
- 0.0953 5	0.2116 52	- 2.9556 72	0.5092 319	- 0.0011 90835	0.1826 281	21.298	922.02	9.38	199.77 524	190
- 0.0275 9	0.2165 27	- 2.9516 1	0.4927 365	0.1438 091	- 0.0515 0017	21.438	921.08	9.38	201.08 844	189
0.0074 63	0.2361 28	- 2.9708 8	0.1436 725	0.1438 091	- 0.1007 203	21.698	921.29	8.99	195.06 502	189
0.0095 1	0.2353 06	- 2.9807 84	0.1130 762	- 0.0740 8988	- 0.0017 47909	21.848	921.69	8.99	196.41 352	189
0.0771 74	0.2004 22	- 2.9729 96	0.7941 768	- 0.3875 025	0.1158 483	21.878	921.4	8.96	196.02 688	188
0.1865 96	0.1648 36	- 2.9875 63	0.8859 656	- 0.2087 136	- 0.1499 405	21.938	921.19	8.88	194.80 944	186
0.2345 07	0.1637 15	- 3.0196 72	- 0.0140 9801	0.0568 0913	- 0.2656 744	22.158	921.79	8.88	196.76 304	185
0.1752 47	0.1804 84	- 3.0409 32	- 0.7188 774	0.1041 669	0.0078 30067	22.3	920.87	8.76	195.34 8	188
0.0893 83	0.1853 35	- 3.0154 22	- 0.6129 875	- 0.0123 6514	0.3819 032	22.3	922.3	8.76	195.34 8	190
0.0703 83	0.1445 99	- 2.9614 55	- 0.1064 191	- 0.4811 538	0.4476 188	22.47	921.37	8.95	201.10 65	190
0.0358 61	0.0840 78	- 2.9542 01	- 0.5901 068	- 0.3821 814	0.0120 8694	22.48	921.12	8.99	202.09 52	190
- 0.0833 2	0.0634 07	- 2.9620 3	- 1.2137 4	0.0131 7613	0.0331 0528	22.61	921.46	8.99	203.26 39	192
- 0.2006 6	0.0713 68	- 2.9388 55	- 0.7635 746	0.0182 3117	0.4699 674	22.75	921.23	9.03	205. 4 3 25	196
- 0.2392	0.0824 22	- 2.8788	- 0.0369	- 0.0533	0.5694 719	22.88	921.42	9.03	206.60 64	199

			-				-		-	
7		06	7873	3759						
-	0.0881	-	0.1098	-	0.4667	23.09	920.7	9.15	211.27	200
0.2131	09	2.8181 63	836	0.0009 24778	747				35	
-	0.1023	-	-	0.1134	0.1828	23.16	920.94	9.22	213.53	200
0.2126	68	2.7933	0.1061	788	942				52	
7	0 1 1 7 0	89	53	0 1051	0.0940	23.35	020.35	0.22	215.28	200
- 0.2052	0.1179 75	-	559	577	3185	23.33	920.33	9.22	7	200
7		28							-	
-	0.1481	-	0.8356	0.3037	0.1166	23.35	921.42	9.11	212.71	199
0.1231 9	69	2.7884	813	081	465				85	
-	0.1826	-	0.5781	0.2797	-	23.48	920.89	9.11	213.90	197
0.0395	08	2.8003	401	631	0.1190				28	
9	0.1016	66	0.1020		781	22.7	020.24	0.01	010.50	105
-	0.1916	- 2 8275	0.1920	- 0.0283	- 0.1680	23.7	920.34	9.01	213.53	195
5	07	56	743	2843	322				,	
0.0101	0.1879	-	0.1615	-	-	23.77	921.28	8.99	213.69	195
52	79	2.8610	724	0.0014	0.1780				23	
0.0370	0 1013	92	0.2493	03395	888	23.01	920.16	8 00	21/ 95	106
97	23	2.8734	705	039	4411	25.71	720.10	0.77	09	170
		68								
0.0685	0.2031	-	0.1879	0.0858	0.1935	23.94	921.04	8.7	208.27	197
96	21	2.8638	119	626	899				8	
0.0687	0.2063	-	-	0.0233	0.1637	24.12	920.38	8.7	209.84	198
27	74	2.8475	0.1435	3971	917				4	
0.0044	0.1051	89	925		0.0000	21.26	020.45	0.65	200.04	100
0.0366	0.1951	- 2 8303	- 0.4793	- 0.1056	0.2300	24.26	920.45	8.65	209.84 9	199
75	10	86	538	969	574					
-	0.1925	-	-	0.0222	0.3034	24.3	920.84	8.52	207.03	201
0.0234	5	2.8073	0.5389	7549	705				6	
4	0 1897	82	501		0 3282	24.43	920.63	8 52	208.14	202
0.0800	63	2.7720	0.5511	0.0394	136	27.73	120.05	0.52	36	202
7		26	886	4924						
-	0.1781	-	-	-	0.2475	24.62	920.59	8.38	206.31	202
0.1204	/4	2.7455	0.3420 695	0.1397 519	99				30	
-	0.1747	-	-	0.1068	-	24.68	920.38	8.38	206.81	200
0.1602	36	2.7498	0.2287	809	0.0836				84	
1	0.1994	07	301	0 1616	3932	24 79	021.14	8.26	204.69	200
- 0.2068	0.1884 54	-	- 0.5011	0.1616 882	- 0.0575	24.78	921.14	8.20	204.68	200
0.2000		54	703		6595					
-	0.1959	-	-	0.0150	-	24.94	920.27	8.3499	208.24	200
0.2591	05	2.7851	0.2383	92	0.0048			99	89751	
-	0.1807	-	0.3946	-	-	25.02	921.2	8.3499	208.91	198
0.2428	8	2.7857	365	0.1293	0.0128	_20.02		99	6975	
8		81		758	6872					
-	0.1571	-	0.5816	-	-	25.2	920.26	8.16	205.63	196
0.1720	22	82	/31	0.1291	787				2	
			÷			÷				

-	0.1439	-	0.1158	0.0802	-	25.35	921.09	8.16	206.85	196
0.1436	87	2.8426	11	7545	0.2970				6	
4		73			153					
-	0.1649	-	0.2727	0.2580	0.1084	25.38	921.42	8	203.04	197
0.1245	16	2.8604	833	001	523					
4		4								
-	0.1895	-	0.7139	0.1036	0.2417	25.5	921.5	7.92	201.96	197
0.0581	49	2.8467	024	883	458					
		39								
0.0322	0.1838	-	0.6391	-	0.0283	25.65	920.15	7.92	203.14	195
58	45	2.8369	41	0.1166	6978				8	
		18		052						
0.0673	0.1566	-	-	-	-	25.73	921.35	7.81	200.95	194
25	01	2.8563	0.0055	0.2669	0.1025				13	
		8	10043	261	292					
0.0292	0.1318	-	-	-	-	25.86	920.74	7.81	201.96	194
64	37	2.8874	0.3471	0.1913	0.1405				66	
		36	245	666	751					