DESIGN AND DEVELOPMENT OF AUTONOMOUS MANIPULATOR FOR SOLAR PHOTOVOLTAIC CLEANING

By

AMIT KUMAR MONDAL

COLLEGE OF ENGINEERING STUDIES

DEPARTMENT OF ELECTRONICS, INSTRUMENTATION & CONTROL ENGINEERING

Submitted

IN PARTIAL FULFILMENT OF THE REQUIREMENT OF THE DEGREE OF DOCTOR OF PHILOSOPHY

TO

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

DEHRADUN

July, 2015

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis on "Design and Development of Autonomous Manipulator for Solar Photovoltaic Cleaning" by Amit Kumar Mondal in Partial completion of the requirements for the award of the Degree of Doctor of Philosophy (Engineering) is an original work carried out by him under our joint supervision and guidance.

It is certified that the work has not been submitted anywhere else for the award of any other diploma or degree of this or any other University.

Dr. Kamal Bansal Thesis Supervisor Professor & Dean College of Engineering Studies University of Petroleum and Energy Studies, Dehradun

BIDHOLI CAMPUS Energy Acres, PO Bidholi Via Prem Nagar, Dehradun 248007 (UK), INDIA, T +91-135-2102690/1, 2694201/3/8 F +91-135-2694204 KANDOLI CAMPUS Knowledge Acres, Vill. Kandoli, PO Bidholi Via Premnagar, Dehradun 248007 (UK), INDIA, T +91-135-2102647/2102760 CORPORATE OFFICE 2nd Floor, 210, Okhla Industrial Estate, Phase III, New Delhi-110020, INDIA, T +91-11-41730151-53 F +91-11-41730154

RESEARCH DETAILS

TITLE OF RESEARCH	DESIGN AND DEVELOPMENT OF
PROPOSAL	AUTONOMOUS MANIPULATOR FOR SOLAR
	PHOTOVOLTAIC CLEANING
NAME OF RESEARCH	AMIT KUMAR MONDAL
SCHOLAR	
NAME AND DESIGNATION	DR. KAMAL BANSAL
OF THE SUPERVISOR/S	DEAN, COLLEGE OF ENGINEERING STUDIES
	UNIVERSITY OF PETROLEUM AND ENERGY
	STUDIES, INDIA.
	kamalbansal@ddn.upes.ac.in
PLACE OF WORK	UNIVERSITY OF PETROLEUM AND ENERGY
	STUDIES, DEHRADUN, INDIA

Dr. Kamal Bansal

(Thesis Supervisor)

Amit Kumar Mondal

(Research Scholar)

ACKNOWLEDGEMENTS

I, first and foremost, would like to express my deepest gratitude to Dr. Kamal Bansal, my supervisor, for encouraging me to take up a project on Automation of Solar cleaning system of solar photovoltaic panels as the topic of research. Dr. Kamal Bansal has been a source of inspiration and a monument of motivation to me throughout this work. Without him, this work would never have been completed.

I am thankful to Dr. Parag Diwan, Chancellor Dr. S J Chopra, Vice Chancellor Dr. Shrihari, President Prof. Utpal Ghosh of Engineering Studies for motivating me with seed fund, space and environment in this serene campus of University of Petroleum and Energy Studies, Dehradun, in India to carry out this work. I would like to mention a special thanks to team R&D, UPES for providing constant guidance and support.

I should mention my gratitude to Ms. Vindhya Devalla and Mr. Shival Dubey, who is there with me throughout the journey especially when I had tough times, measuring it by word of thanks is not adequate/appropriate. Also, I thank Dr. Manish Prateek, Mr. Rajesh Singh and Mr. Vivek Kaundal for supporting me during the last leg of this work. I am thankful to each and every faculty colleague of Electronics, Instrumentation and Control Engineering department for their support and cooperation.

Finally, I must express my very profound gratitude to my parents for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Amit Kumar Mondal University of Petroleum and Energy Studies July 2015 DEDICATED TO

MY PARENTS & ALMIGHTY

DECLARATION

I do hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Amit Kumar Mondal Doctoral Research Fellow, Department of Electronics, Instrumentation and Control University of Petroleum and Energy Studies Dehradun-248007

Sl. No.	Particulars	Page No.
1.	Chapter 1: Introduction	1
1.1	Definition of a Robot	1
1.2	Robot Nomenclature	2
1.2.1	Link	2
1.2.2	Workspace	2
1.2.3	End Effectors	3
1.2.4	Joint	3
1.2.5	Prismatic Joint	3
1.2.6	Revolute Joint	3
1.2.7	Cylindrical Joint	4
1.2.8	Spherical Joint	4
1.2.9	Screw Joint	4
1.2.10	Degree of freedom	5
1.2.11	Robot Manipulators	5
1.3	Robot Specifications	7
1.3.1	Axes	7
1.3.2	Tool orientation	7
1.3.3	Position	7
1.3.4	Orientation	8
1.3.5	Reach and Stroke	9
1.3.6	Accuracy	9
1.3.7	Repeatability	9
1.3.8	Precision	10
1.3.9	Load bearing capacity/ Payload	10
1.4	Sensor Technology	10
1.4.1	Proprioceptors	10
1.4.2	Exeroceptors	10
1.5	Review of Solar PV Technology	11
1.5.1	Brief history of Solar PV Technology	11
1.5.2	How PV works	11
1.5.3	Solar Cell Characteristic I-V Curve	13
1.5.5	PV System performance	14
1.6	Problem Statement	17
1.7	Thesis Outline	17
2.	Chapter 2: Literature Review	19
2.1	Introduction	19
2.2	Literature review on industrial solar PV cleaning products	20
2.2.1	Summary of the industrial available solar PV cleaning systems	26
2.3	Literature review on effect of dust on Solar PV panel	28
2.3.1	Summary of dust effect on solar PV performance for the period of 1942 to 2012	38
2.3.2	Summary of studies using forced air (blowing) with water mist and ultrasonic transducer assists	54
2.3.3	Summary of mitigation approaches to remove or prevent dust accumulations	54
2.3.4	General recommendation of mitigation measures against impact of dust	55

CONTENTS

	accumulation on SPV performance.	
2.3.5	Summary of techniques investigated for preventing dust accumulation on	56
	solar surfaces (reflective and transmissive).	
2.4	Research Gap	57
2.5	Objectives	58
3.	Chapter 3: Experiment Design	59
3.1	Problem definition and research questions	59
3.2	Overview of test bed	59
3.3	Details of solution procedure	60
3.3.1	Estimation of soiling effects	60
3.3.2	Approach	60
3.4	Configuration of SPCRA	62
3.5	Mechanical design of SPCRA	63
3.6	Component Specifications	72
4.	Chapter 4: Experiment Design	76
4.1	Trajectory Planning	76
4.1.1	Path versus Trajectory	76
4.1.1	Joint space trajectory planning	76
4.2	Dynamics of SPCRA	78
4.3	Block Diagram	85
4.4	Circuit Diagram	86
4.5	Algorithm	86
4.5.1	Main Loop	87
4.5.2	Path Clearance Algorithm	88
4.5.3	Water Level Algorithm	88
4.5.4	Battery Status Algorithm	89
4.5.4	Rail Guide Algorithm	89
4.5.6	Arm Down Algorithm	90
4.5.7	Arm, Up Algorithm	90
4.5.8	End Effector cleaning Algorithm	91
5.	Chapter 5: Result	92
5.1	PV System Terminologies	92
5.2	Monitoring Results	93
5.2.1	Power consumption by SPCRA	95
5.3	Performance comparison (with other products available in the market)	96
6.	Chapter 6 : Conclusion and Future Scope	99
6.1	Conclusions	99
6.2	Future Scope	100
7	Chapter 7: References	101
8.	Annexure I	108
9.	Publications	109
10.	Bio Data	111

Fig. No.	Description	Page No.
1.1	Rigid bodies joints to form a link	2
1.2	Workspace of a robot	2
1.3	Prismatic joint	3
1.4	Revolute joint	3
1.5	Cylindrical Joint	4
1.6	Spherical Joint	4
1.7	Screw Joint	4
1.8	Cartesian Robot	5
1.9	Cylindrical Robot	6
1.10	Spherical Robot	6
1.11	SCARA Robot	7
1.12	Position vector of a point	8
1.13	Position vector of a point	9
2.1	Heliotex Automatic Solar Panel Cleaning System	21
2.2	Cleaning of Solar PV module using Gekko Solar	21
2.3	NI's Prototype cleaning demonstration	22
2.4	Wash Panel cleaning and placing over Solar PV panel	23
2.5	Simulated and real time operation of PV cleaner	23
2.6	Solar Brush Cleaning Solar PV module	24
2.7	HECTOR Robot cleaning solar PV module	24
2.8	Greenbotics Solar PV cleaning robot in action	25
2.9	Series connection of two sub modules	29
	(a) Two cells shaded in one sub module,	
	(b) One cell shaded in each module	
2.10	Parallel connection of two sub modules	29
	(a) Two cells shaded in one sub module,	
	(b) One cell shaded in each module	
2.11	Block Diagram of EDS/PV array system	30
2.12	Single phase electric curtain with the two "Combs" of parallel electrode	31
2.13	(a) Two photovoltaic modules are connected in series	34
	(b) Two photovoltaic modules are connected in parallel	
2.14	Surface Electrodes energized by phased voltages produce an electrostatic	36
	travelling wave for lifting and transporting dust particles.	
2.15	Simulation model for calculated particle trajectory	37
3.1	Top view of the work space of SPCRA	64
3.2	Side view of the work space of SPCRA	64
3.3	Cleaning work space of SPCRA	65
3.4	Displacement of Rail Guided system	66
3.5	Strain of Rail Guided System	67
3.6	Stress of Rail guided system	67
3.7	Mesh Diagram of arm	68
3.8	Stress Diagram of arm	68
3.9	Displacement Diagram of arm	68

List of Figures

3.10	Static Strain Diagram of arm	68
3.11	Mesh Diagram of Base	69
3.12	Stress Diagram of Base	69
3.13	Displacement Diagram of Base	69
3.14	Static Strain Diagram of Base	69
4.1	Graphical representation of trajectory planning	77
4.2	Schematic diagram of arm- wiper system & Heading/ Yaw motion	79
4.3	Translational forces about the rails	79
4.4	Torque and translational force	80
4.5	Forces acting on SPCRA	83
4.6	Time series analysis of SPCRA	84
4.7	Phase plot analysis of SPCRA	84
4.8	Block diagram of SPCRA	85
4.9	Circuit diagram of SPCRA	86
4.10	Main Loop	87
4.11	Path clearance algorithm	88
4.12	Water level algorithm	88
4.13	Battery status algorithm	89
4.14	Rail Guide algorithm	89
4.15	Arm Down algorithm	90
4.16	Arm up algorithm	90
4.17	End Effector Cleaning Algorithm	91
5.1	Weekly power loss due to natural soiling under ambient conditions	94
5.2	Actual Structure of SPCRA	98

List of Tables

Table No.	Description	Page No.
2.1	Summary of available industrial Solar PV module cleaning system	26
2.2	Summary of Effect of Dust on Solar PV Module	38
2.3	Summary of Forced Air Blowing Technique	54
2.4	Summary of Mitigation Approaches	54
2.5	General recommendation of mitigation measures against impact of	55
	dust accumulation on SPV performance.	
2.6	Summary of techniques investigated for preventing dust	56
	accumulation (reflective and trans missive)	
2.7	Comparison between different techniques used for Solar PV	57
	Cleaning	
3.1	Mechanical and control aspect in Research methodology	60
3.2	Robot Actuators	62
3.3	Mechanical properties of cast iron to check the load bearing capacity	70
3.4	Mechanical properties of Aluminum 6063- T5 to check the load	71
	bearing capacity	
3.5	Component Specifications	72
4.1	Actual and Simulated torque	77
5.1	SPV specifications	92
5.2	Principle parameters of Solar Cell	93
5.3	Weekly power loss (in Watts) due to natural soiling depending on	94
	ambient conditions	
5.4	Current consumption of SPCRA parts in different conditions	95
5.5	Energy Consumption by SPCRA	95
5.6	Performance comparison (with other products available in market)	96
5.7	Wind force acting on SPCRA at different tilt angle of SPCRA	108

EXECUTIVE SUMMARY

The global energy needs have increased significantly in the past several decades and are predicted to rise more than 50% by 2030. At present the energy needs are met mostly from the conventional sources of energy like coal, gas and oil, which are exploited in an unsuitable manner resulting in exhausting global reserves of fossil fuels in the near future. With growing cost of electricity and concern for the environmental impact of fossil fuels, implementation of eco-friendly energy sources like solar power are rising. Electricity generation using PV technology is increasing rapidly throughout the world during the past decade. The prime method for harnessing solar energy is with arrays made up of photovoltaic (PV) panels. Accumulation of dust and debris on a single panel in an array diminishes their efficiency in energy generation considerably and give emphasis to the need to keep the panels surface as clean as possible. Current labor-based cleaning procedures for photovoltaic arrays are expensive in energy usage, water, time and lack automation capabilities. Existing efficiency of Mono crystalline module is 14-16%. After moderate amount of dust deposition, efficiency decreases by 69-97%.

The chief limiting factors which reduce extensive use of PV applications includes the relatively low conversion efficiency of PV cells due to heating of PV panels and the high initial investment cost. Module temperature is always higher than the ambient temperature. Higher temperature of the module is because of the glass cover over it, which traps the infrared radiation. Overall, power output and efficiency of the PV cells decrease with the increase in its operating temperature. Dust collection on PV panel surface also reduces its efficiency, and the output power of the PV module strongly depends upon the solar irradiation falling on it. The power output of a module increases linearly with the increase in the incident solar radiation. Accumulation of dust and debris on even one panel in an array reduces their efficiency in energy generation considerably and emphasizes the need to keep the panel surface as clean as possible. Due to humidity, when light hits water droplets, it may be refracted, reflected or diffracted, which affects the reception levels. High content of water vapour in the air causes encapsulation. Because of the water content of the humidity, failure at cell interconnections or cracked cells happens in crystalline silicon cells, and failure at scribe lines is the dominant cause of cell thin film modules degradation. The impact of sedimentation (i.e. dust and dirt particles) on exposed surfaces of SPV panels. Dust prevents the incident light in reaching to the SPV, causing reduced power output and efficiency. Dust accumulation occurs at different rates in different parts of the world; also, it depends upon the panel orientation, direction of wind, and nature of dust: dust composition, size distribution, deposition density. Apart from the above natural factors, even the manufacturing technology also plays a role, as different type of PV technologies having different amount of efficiencies. Orientation and tilt angle of the PV module plays an important role for the efficiency of SPV as performance of SPV module depends on the amount of solar radiation received by a PV module which in turn depends on the orientation and tilt angle. Orientation of modules is generally north in southern hemisphere and south in northern hemisphere. Tilt angle is site dependent and has to be optimized to maximize the incident solar radiation on the PV module surface.

There are several existing methods available in industrial grade and is been used in real time. Existing solutions are also dependent on: Geographical terrain and area of application. Depending on the above factors, existing solutions can be further compared on the basis of cost, ease of use, performance rate, etc. The existing solutions are not universally applicable for all situations. In this research solar panel cleaning robotic arm that can clean SPV panels has been developed. It is an ergonomically designed system with traits like anti-interloped design, automated grid cleaning mechanism, efficient algorithm, all weather cleaning support, plug-n-play strategy and economical establishment costs.

CHAPTER- 1 INTRODUCTION

The global energy needs have increased significantly in the past several decades and are predicted to rise more than 50% by 2030 [1]. At present the energy needs are met mostly from the conventional sources of energy like coal, gas and oil, which are exploited in an unsuitable manner resulting in exhausting global reserves of fossil fuels in the near future. With growing cost of electricity and concern for the environmental impact of fossil fuels, implementation of eco-friendly energy sources like solar power are rising. Electricity generation using PV technology is increasing rapidly throughout the world during the past decade. The prime method for harnessing solar energy is with arrays made up of photovoltaic (PV) panels. Accumulation of dust and debris on a single panel in an array diminishes their efficiency in energy generation considerably and give emphasis to the need to keep the panels surface as clean as possible. Current labor-based cleaning procedures for photovoltaic arrays are expensive in energy usage, water, time and lack automation capabilities. Existing efficiency of Mono crystalline module is 14-16%. After moderate amount of dust deposition, efficiency decreases by 69-97% [2].

Robotics is a modern technology which has become a vital technology in automation industry of the present world. Robots perform flexible but restricted number of actions. These systems generally contain a programmable chip (micro controller or microprocessor) that controls the actions of the robot. Robotics is an interdisciplinary field that combine various subjects like control system, electronics and electrical, mechanical, computer science engineering. Mechanical engineering contributes for the study of kinematics and dynamics of the robot, Control theory deals with the control flow of the system, electronics and electrical technology plays a vital role in system voltage and sensor related issues and programming of the robot is taken care by computer science engineering for desired task.

1.1 DEFINITION OF A ROBOT

"A re-programmable, multifunctional mechanical manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." (*Robot Institute of America, 1979*).

1.2 ROBOT NOMENCLATURE

1.2.1 Link

The individual rigid bodies that are joined together to form a robot.

Fig. 1.1: Rigid bodies joints to form a link

1.2.2 Workspace

The surrounding space upto which the robot can reach.

Fig. 1.2: Workspace of a robot

1.2.3 End effectors

It is the end of the robot which handles the applications. All the links are linked up in a chain to the end effectors. This part is attached to the last joint of a manipulator that in general handles objects makes connections to other machines, or executes the required tasks.

1.2.4 Joint

Joint is a point that attaches two links or parts that revolve, flex, translate or rotate. Joint plays a very vital role that helps the robot to move in different directions. There are different types of joints used in robotics providing better degree of freedom.

1.2.5 Prismatic joints

This joint provides a sliding or a linear motion to the link

Fig. 1.3: Prismatic joint

1.2.6 Revolute joint

This joint provides an angular motion to the link

Fig. 1.4: Revolute joint

1.2.7 Cylindrical joint

These joints are not commonly used. They are used in flying objects

Fig. 1.5: Cylindrical joint

1.2.8 Spherical joint

These joints slide causing a revolute movement

Fig. 1.6: Spherical joint

1.2.9 Screw joint

These joints are used to move along the axis using thread

Fig. 1.7: Screw joint

1.2.10 Degree of freedom

Degree of freedom (DOF) is used to denote the direction in which the robot moves. Each joint denote one degree of freedom. Robots generally have 5 or 6 DOF depending upon the application.

1.2.11 Robot manipulators

This is the main body of the robot which consists of the links, joints and other structural elements of the robot.

Over years different types of robots have been developed have different mechanical and configurations depending upon the application. Six types of configurations have been evolved.

Cartesian robot (3P)

This robot is formed by three prismatic joints whose axes are coincident with the Cartesian coordinate system. It has three translator motions at right angles to each other.

Fig. 1.8: Cartesian Robot

Cylindrical robot (PRP)

This robot rotates along the main axis i.e. the original axis forming a cylindrical shape. It has one revolute and two prismatic joints for orientating the part plus positioning the part.

Fig. 1.9: Cylindrical Robot

Spherical robot (P2R)

This robot has two revolute and one prismatic joint for orientation plus positioning of the part.. These joints move along to form a hemisphere or a polar coordinate system.

Fig. 1.10: Spherical Robot

SCARA Robot

Selective compliance assemble robot arm has two revolute joints that are parallel and let the robot to move in a horizontal plane and one prismatic joint that travels vertically.

Fig. 1.11: SCARA Robot

Articulated robot (3R)

An articulated robot's joints are all revolute, similar to a human's arm.

1.3 ROBOT SPECIFICATIONS

The specifications generally include number of axes, tool orientation, reach and stroke, repeatability, accuracy, precision and load bearing capacity.

1.3.1 Axes

All the manipulators have three types of axes MAJOR axes which gives the position of the wrist, MINOR axes for the orientation of the tool.

1.3.2 Tool orientation

A coordinate system is attached to describe the position and orientation of the body in space. Transformation is used to calculate the position of the object from one frame to another.

1.3.3 Position

A 3x1 position vector of a point can be located once the coordinate system is established. The vectors are written with an upper subscript. This indicates the coordinate system to which they are referred. Example, ^AP that is the value of ^AP has the distance (vector) between the coordinate point and the new point.

Fig. 1.12: Position vector of a point

 $\{A\}$ is the coordinate system and ^AP is the position of a point. ^AP is represented as a vector and can be assumed as a point represented in the space. The individual elements of the vector are:

$${}^{\mathrm{A}}\mathrm{P} = \begin{bmatrix} Px\\ Py\\ Pz \end{bmatrix}$$

Therefore, the position of the point in the space is represented as a vector.

1.3.4 Orientation

For an object not only position but also the orientation in the space is important. In orientation a coordinate system is attached to the body and is described using a reference frame. A coordinate frame $\{B\}$ is attached to the $\{A\}$ and $\{B\}$ is described with respect to frame $\{A\}$.

Thus, position of the point is described with vector and orientation is described by attaching a coordinate frame.

Fig. 1.13: Position vector of a point

To describe the orientation of the point attached to frame, {B}, is to write the unit vectors of the three principle axes in terms of frame {A}. The axes of the unit vectors of the point can be written as \hat{X}_B , \hat{Y}_B , and \hat{Z}_B , in terms of {A} they can be written as ${}^A\hat{X}_B$, ${}^A\hat{Y}_B$, and ${}^A\hat{Z}_B$. These three vectors are represented as 3X3 matrix and is called rotation matrix.

1.3.5 Reach and Stroke

Reach is the extreme distance a robot can reach within its work envelope. It is a function of the robot's joints and lengths and its configuration. This is an important specification for industrial robots and must be considered before a robot is selected and installed.

There are two types of reach and two types of strokes. They are horizontal reach, horizontal stroke and vertical reach, vertical stroke.

1.3.6 Accuracy

The ability of the robot to place the tool tip at the desired location

1.3.7 Repeatability

The ability of the robot to place the tool tip again and again repeatedly at the same location. Since many features may affect the accuracy of the position, the robot may not reach the same point every time but will be within a certain radius from the desired point. The radius of a circle formed by the repeated motions is called repeatability. Repeatability defines the extent of the random error, it cannot be predicted and consequently cannot be eliminated.

1.3.8 Precision

Precision is well-defined as how accurately a specified point can be reached. This is a function of the resolution of the actuators as well as the robot's feedback devices.

1.3.9 Load bearing capacity/ Payload

The maximum weight that be barred by the robot and still remain within its other specifications. The payload of robots compared to their own weight is usually very small.

1.4 SENSOR TECHNOLOGY

Autonomous robots are robots that can complete tasks without any human interference. Different robots are autonomous in different ways. For a robot to be autonomous sensors play a vital role. There are different types of sensors used in robotics for different purposes.

Sensors are used to sense the data. There are two types of sensors proprioceptors and exteroceptors.

1.4.1 Proprioceptors

Proprioceptors are sensors used to sense robot's internal parameters like kinematic and dynamic parameters. Based on these sensors the control system of the robot activates. The most common sensors used for measuring these parameters are potentiometers, encoders, RVDT, etc.

1.4.2 Exeroceptors

Exteroceptors are sensors used for measuring position or force type interaction of the robot with the external environment. Examples are, proximity sensors, touch sensors, far away sensor, etc.

1.5 OVERVIEW OF SOLAR PV TECHNOLOGY

1.5.1 Brief history of Solar PV Technology:

The history of solar PV technology can be traced back to 1839 when French physicist Edmund Becquerel discovered the photovoltaic effect while observing certain materials producing an electric current when exposed to light. Then, in 1883, American inventor Charles Fritts constructed the first solar cell prepared of selenium which had an efficiency of nearly 1% [3]. Another notable event was in 1905 when Albert Einstein published his findings which provided a theoretical explanation of the photovoltaic effect based on the photon/wave properties of light. In 1922, he was presented the 1921 Nobel Prize in physics for his discovery of the photoelectric effect law. It wasn't until 1954 when the first practical solar cell, which had an efficiency of 6% and a cost of \$286 per watt, was invented in 1954 by scientists from Bell Labs. The extremely high cost and small energy output of solar cells in the 1950's and 60's have limited their application to space exploration missions where light weight and reliable operation under harsh environment are critical. Price of solar cells continued to decline while efficiency improved that by the 1970s solar cells have found its place in the navigation aids market and by the 1980's, after a further cost decline, solar energy became an attractive option for remote power applications where a small amount of energy is required in the absence of a grid .

The cost and efficiency of solar cells continued the downward and upward trend respectively through the 1990s and the new millennium. Solar energy is now a mature technology used everywhere around the world to power, homes, offices, street lights, etc. Yet, despite the increasing efficiency and the lower cost, it is still considered a secondary energy option and a relatively expensive one compared to other conventional energy sources. However, in the last decade, the solar PV market has experienced a huge growth in many countries around the world especially in Germany, Japan, and the United States all thanks to pilot programs and government subsidies aimed at stimulating the solar energy industry and promoting the use of renewable energy [4].

1.5.2 How PV works:

The sun constantly emits radiation energy that travels a long distance in space until it reaches the earth's atmosphere. As the distance between the earth and sun varies throughout the year, the amount of radiation that reaches the earth increases as the distance decreases and decreases as the distance increases. On average, that solar radiation energy just outside the earth's atmosphere equals 1367 W/m^2 and is referred to as the solar constant. However, this amount of radiation doesn't fully reach the earth's surface and is further reduced as it enters the atmosphere due to absorption by oxygen, ozone, greenhouse gases, and due to scattering by air molecules, aerosols, clouds, and suspended dust. The sunlight that falls on the earth's surface has direct and diffused components. On clear sunny days, the direct radiation is the dominant component. During very cloudy days on the other hand, the diffused (indirect) component which is caused by light reflection off clouds and scattering through the atmosphere accounts for the bigger portion. When a PV module is exposed to light, photons with enough energy cause the valence bonds in the semi-conductor to break and create free positive and negative charges (holeelectron pairs). In order to control the flow of charges and create an electric field, positive and negative regions known as a p-n junction must be created. In crystalline silicone, this is accomplished by doping the silicone with small amounts of phosphorous which has 5 valance electrons thus creating an n-type region. On the other hand, doping the silicone with a small amount of a trivalent element such as boron creates the p-type material. When the two regions are brought together to form a p-n junction and the PV module is exposed to light, voltage builds across the cells and by connecting a load to the PV module, electrons will flow from one electrode to the other creating an electric field that powers the load [5].

However, not all the energy from the photons will be utilized by the PV module. This is because of the spectral sensitivity of the PV material and the spectral distribution of the incoming light. In other words, sun light has different wavelengths and thus the photons falling on the PV module have different energy levels. In order to break the bonds in the semiconductor and create free electrons, the energy in the photons must be within the band-gap energy (energy needed to free electrons) of the PV material. Photons with less energy than the band-gap energy will not contribute to electricity generation. Photons with excess energy than needed will also be wasted and dissipate as heat. Therefore more than 50% of the light energy falling on the PV module is lost[5]. Other PV efficiency limiting factors include:

• Shading and optical losses where part of the incoming light is reflected off the top surface of the module or blocked by the electrical contacts on wafers.

• Internal resistance within the cell caused by interconnections and the bulk resistance of the semiconductor material.

• Recombination losses which are caused by electrons and holes recombining instead of separating in the p-n junction [5].

1.5.3 Solar Cell Characteristic I-V Curve:

The performance of a solar cell can be characterized using solar cell characteristic I-V curve. The main parameters of this curve are as follows:

• The open circuit voltage (V_{oc}) is the maximum cell voltage at zero current. That is, if light falls on an unloaded PV cell and the voltage that builds up as a result is measured across the terminals of that cell, then this voltage is called the open circuit voltage.

• The short circuit current (I_{sc}) is the maximum current generated at zero voltage. In other words, if the illuminated cell is short circuited and the current is measured using an ammeter then this current is defined as the short circuit current. Using a variable resistor and measuring the corresponding cell current and voltage values for different resistance values, the cell I-V curve can be plotted and the cell power curve can be determined by the product of all V and I values.

• The maximum power point power (Pmpp) is the point on the I-V curve where the cell generates maximum power. That is, it is the maximum product of I and V values and these values are known as I_{mpp} and V_{mpp} respectively. The I_{sc} is directly proportional to the irradiance and therefore its value goes up with increasing irradiance and goes down when it decreases. However, the V_{oc} remains constant with irradiance and only falls once irradiance falls below around 100 W/m²

For standardization and comparison purposes, I-V characteristic curves for different cells and modules are determined under what is known in the PV industry as standard test conditions (STC):

- Direct Irradiance = 1000 W/m^2
- Cell temperature = $25 \,^{\circ}C$

• Air mass (AM) = 1.5

At a given location when the Sun is directly overhead and the sun light has the shortest path length to the module, the AM has a value of one. If the sun is instead at an incline from such a path by an angle φ , then the AM equals 1/cos φ . An AM of 1.5 corresponds to a sun inclination of 48.20° from overhead.

1.5.4 PV System performance:

In addition to ambient temperature and available irradiance, the energy yield of a PV system depends on the performance and reliability of key components that make up the overall system. The following describes de-rate factors that contribute to loss in energy yield:

✤ Nameplate DC Rating:

The nameplate DC rating or the sticker DC power rating that PV module manufacturers provide on their modules is for maximum power output under STC. Actual field performance might differ from the nameplate rating due to inaccuracy by the manufacturer or due to lightinduced degradation that some modules suffer from when they are exposed to sunlight for the first time before stabilizing during the first few hours of operation [6].

Diode and Connection losses:

Some power loss will occur due to by-pass diodes used in PV modules and resistive losses in connections between modules and other electrical components.

✤ Mismatch losses:

Modules with different current and voltage characteristics that are connected together yield a total power output less than that achieved by summing the power output of individual modules. The difference in this power output is known as mismatch loss and the output for individual modules is limited to that of the module with the lowest output.

✤ DC and AC Wiring:

DC and AC wiring de-rates account for cable and wire resistive losses that occur throughout the PV plant starting from the modules until connection to the main power grid.

Sun Tracking:

Sun tracking losses might occur if single or dual axis tracking systems are not at the optimum orientation or are misaligned due to a mechanical malfunction.

✤ Shading

Shading losses occur if a shadow is cast on the PV modules from other PV arrays that are in close proximity or from other structures blocking the sun's rays.

Inverter losses

The inverter de-rate factor accounts for inverter related losses that arise from different power conditioning tasks. An inverter (power conditioning unit) is an essential component of a PV system that mainly converts the DC current produced by the SPV modules to AC current suitable for main grid transmission and use by devices requiring AC current. It also performs the following:

o Optimization of AC power output by tracking the maximum power point (MPP) which constantly changes during the day due to changes in temperature and irradiance levels.

- o Monitoring and storing of operating data.
- o Sometimes includes a transformer to match voltage levels to that of the grid.
- o Provides voltage overload protection.
- ✤ Transformer losses:

Some power loss will occur in the transformers which are common components in electrical devices and power grids used to step up or step down the voltage between electrical circuits.

Soiling losses:

These losses account for power drop from dirt, snow, dust, and other objects that might cover the module surface.

The preceding factors represent the major parameters affecting system performance but they are by no means inclusive of all parameters affecting the energy yield. The PV system quality can be measured regardless of size and irradiance levels using the performance ratio (K) which is defined as "the ratio between the actual energy output of a system and nominal energy generation potential of a system". PV system performance ratio values are assumed to fall between 0.70 and 0.85 while systems achieving higher values are considered very good designs. It can be evaluated using the following formula:

$$K = EP / \{PAS (HA / GS)\}$$

Where,

EP = actual system generated electricity (kWh)

PAS = nominal array output at STC (kW)

HA = actual in-plane irradiation (kWh/m2)

GS = reference irradiance (=1 kW/m2)

Trajectory and position control of robots are very essential tasks, also positioning must be precise, fast, stable and reliable in order to guarantee high standards, but often robotic arms, due to instability starts oscillating around the desired position [7]. Most of the robotic systems are designed to work in stable and controlled conditions, it is essential to study the effects of instabilities and damage, danger caused due to it. Design has been proposed to implement a robotic arm that can clean solar panel; such a design would be ideally suited for situations where human interference is less. The project will be based on guide rails that will be installed parallel to the pre-installed solar panels. This helps to remove the weight of the cleaning arm to be directly over the panels and hence preventing the panels in case of any adverse happening which may lead to falling down of the cleaning arm on the panel and damaging it.

The guide rails will upkeep the base of the cleaning arm, which will be driven by motor and controlled by ultrasonic/proximity sensors. The arm will move towards the panel to be parallel to the cleaning surface. The leaning of the arm will be controlled by the ultrasonic/proximity sensors installed at the specific pre-defined angle (depending on individual panels). The motion of the cleaning head is also controlled by the ultrasonic/proximity sensors which are installed at the upper and lower end of the arm. The piping is done in the cavity of the arm so as to properly utilize the space of the robotic arm and to provide a dynamic balance to the arm. The motors used for the inclination of arm as well as motion of the cleaning head are Worm geared dc servo motor and side shaft DC motor with modifications in the gear arrangements to suit the needs of the application and ease of control.

1.6 PROBLEM STATEMENT

Solar PV energy plays a major role in reducing emissions from fossil fuels and checks depletion of non-renewable energy resources. However, soiling of SPV modules drastically reduces the energy yield and even decreases the lifetime of SPV modules and other components associated with it. Soiling can be in the form of dust, dirt, bird droppings, leafs and pollen, which accumulates on the surface of SPV modules.

The SPV modules must be periodically cleaned to ensure clean, clear and dirt free surface. This task might not pose a big problem in terms of financial and environmental costs associated with SPV cleaning as its cost comes from the enhanced efficiency. Furthermore, there are several methods of cleaning SPV's are available with its advantages and disadvantages. Choosing the ideal method, will optimize the energy yield of SPV modules in light of economic and environmental factors.

1.7 THESIS OUTLINE

Chapter 2 discusses in detail about the literature survey done on two aspects:

- About the effect of dust on SPV and upto what extent it is reducing the efficiency of SPV's. Also it covers the effect of different type, composition, size etc. of dust on SPV efficiency;
- ii. About the Industrial Automatic and robotic solutions used for cleaning SPV modules and their gaps.

Chapter 3 discusses in detail about the soiling of SPV panels and why it is an area of concerned. As per the cleaning techniques available what will be the optimum solution and the technique and methodology followed for it.

Chapter 4 discusses in detail about the Cleaning mechanism and approach for cleaning. A 2 DOF nonlinear model has developed and explained in detail. Few control strategy is also discussed which helps in moving in the guide rail and do the cleaning operation smoothly. Trajectory planning has been done for the manipulator to calculate the torque required for it. Considering other factors solid works modeling has been done to choose the material to fabricate the manipulator. This helps in designing an optimal robotic manipulator.

Chapter 5 includes the overall results and discussions. It consists of the real time data of the test rig, data collection, performance analysis and reporting. Data was collected for a period of four weeks from morning 1000 hrs to evening 1700 hrs over an interval of 30 minutes. Data was been monitored for the both the SPV modules (cleaned and uncleaned). Further performance comparison has been done with market available products.

Chapter 6 deals with the conclusion and future scope. The later chapter deals with references used.

CHAPTER-2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter the first half discusses in detail about the effect of dust on SPV and upto what extent it is reducing the efficiency of SPV's. Also it covers the effect of different type, composition, size etc. of dust on SPV efficiency. The later section discusses about the Industrial Automatic and robotic solutions used for cleaning SPV modules and their gaps. Objectives, research focus and the methodology followed is also discussed in detail.

The global energy requirements have increased considerably in the past several decades and are projected to rise more than 50% by 2030 [1]. Present world energy requirements are met mostly from the conventional sources of energy like coal, gas and oil, which are being exploited in an unregulated manner resulting in exhausting world reserves of fossil fuels in the near future. With increasing cost of electricity and concern for the environmental impact of fossil fuels, implementation of renewable energy sources like solar power are rising. The main method for harnessing solar power is with arrays made up of photovoltaic (PV) cells. Electricity generated using solar photovoltaic (SPV) technology can only be economical if the PV modules operates reliably for 25-30 years under field conditions [8]. The key limiting factors which reduce widespread use of PV applications comprise the high initial investment cost [9] and the comparatively low conversion efficiency of PV cells due to heating of PV panels [10-12]. Module temperature is always higher than the ambient temperature [13]. Higher temperature of the module is because of the glass cover over it, which traps the infrared radiation. Overall, power output and efficiency of the PV cells decrease with the increase in its operating temperature as shown in Figure 1. Dust collection on PV panel surface also reduces its efficiency [13, 14], and the output power of the PV module mainly depends upon the solar irradiation falling on it [13]. The power output of a module increases linearly with the increase in the incident solar radiation shown in Figure 2. Accumulation of dust and debris on even one panel in an array reduces their efficiency in energy generation considerably and emphasizes the need to keep the panel surface as clean as possible [15, 16]. Due to humidity, when light hits water

droplets, it may be refracted, reflected or diffracted, which affects the reception levels. High content of water vapour in the air causes encapsulation [17]. Because of the water content of the humidity, failure at cell interconnections or cracked cells happens in crystalline silicon cells, and failure at scribe lines is the dominant cause of cell thin film modules degradation. The impact of sedimentation (i.e. dust and dirt particles) on exposed surfaces of SPV panels. Dust prevents the incident light in reaching to the SPV, causing reduced power output and efficiency. Dust accumulation occurs at different rates in different parts of the world; also, it depends upon the panel orientation [18], direction of wind [19], and nature of dust [20]: dust composition, size distribution, deposition density as shown in Figure 3-6. Apart from the above natural factors, even the manufacturing technology also plays a role, as different type of PV technologies having different amount of efficiencies as listed in the Table 1. Orientation and tilt angle of the PV module plays an important role for the efficiency of SPV as performance of SPV module depends on the amount of solar radiation received by a PV module which in turn depends on the orientation and tilt angle [21, 22]. Orientation of modules is generally north in southern hemisphere and south in northern hemisphere. Tilt angle is site dependent and has to be optimized to maximize the incident solar radiation on the PV module surface.

The review includes the detailed description on different automated solar panel cleaning systems, a brief overview about electrical, mechanical, chemical and electrostatic methods. The paper also reviews various successful electrical, mechanical, chemical and electrostatic methods developed in the recent years for various applications.

2.2 LITERATURE REVIEW ON INDUSTRIAL SOLAR PV CLEANING PRODUCTS:

Heliotex: Automatic Solar Panel Cleaning Systems.
<u>http://www.solarpanelcleaningsystems.com/solar-panel-cleaning-services.php;</u> August 2013 [23].

It automatically washes and rinses the solar panels. It attaches nozzles to the solar panels as shown in fig. 2.1. It comprises of a five gallon reservoir for soap concentrate. There is also a sediment filter that contains water softener media. It is also having an anti siphon valve to prevent backwashing into the system. System consists of a controller which automatically provides wash and rinse cycles, the controller programming can be changed as per seasonal requirements. It requires treated water and the filter needs to be replaced periodically.

Fig.2.1: Heliotex Automatic Solar Panel Cleaning System. Fig.2.2: Cleaning of Solar PV module using Gekko Solar

 Serbot Swiss Innovations; Gekko Solar <u>http://serbot.ch/images/documents/TD_GEKKO%20Solar_En_2013_06_06.pdf</u>; August 2013 [24].

Gekko Solar is developed for mobile deployment onto Solar PV panels as shown in fig. 2.2. It is having a cleaning capacity of 400 m^2/hr . Thorough cleaning using rotating brush and demineralized water. Its movement is based on feet, with vacuum technology, which are rotating on two trapezoid-shaped geared belt drives, enabling the robot to astonishing flexible movement in every chosen direction. It can be radio controlled with a joystick from a distance of 300m. Vacuum based feet movement which requires air pressure of 8 bar. It is able to clean inclined panels upto 45 deg.

• Serbot Innovations; Gekko Solar Farm

http://serbot.ch/images/documents/TD_GEKKO%20Solar%20Farm_En_2013_06_26.p df ; August 2013 [25] .

Gekko Solar Farm is developed for the cleaning of large field solar farms. It is having a cleaning capacity of 2900 m^2/hr . Thorough cleaning using multiple rotating brushes and demineralized water. Its movement is based on feet, with vacuum technology, which are

rotating on two trapezoid-shaped geared belt drives, enabling the robot to astonishing flexible movement in every chosen direction. It can be radio controlled with a joystick from a distance of 300m. Vacuum based feet movement which requires air pressure of 8 bar. It is able to clean inclined panels upto 30 deg.

• National Instruments(Prototype Design); Design and prototype of an Autonomous Robot to automatically clean solar panels [26].

In this using NI's LAB View real time software to manage the behavior of a robotic arm. The robotic arm was mounted over a moving vehicle as shown in fig. 3.3. By using the NI Lab View tool, controlling for Engine platform, continuous contact and controlled pressure between cleaning tool and SPV panel, sample time, vibrations resistance. The major constraint is channelizing the vehicle motion parallel to the Solar PV panels.

Fig 2.3: NI's Prototype cleaning demonstration

Tuff fab; Nano Clear: SPV Panel Glass Coating Solution

http://www.tufffab.com/solar-panel-glass-coating-solution.html; August 2013 [27].

It is available as a solution which is easy to apply. Once applied it makes the glass surface Non-stick, easy to clean and look new for years. User no longer needs to use harsh chemicals and scrub clean your glass any more. Just a wash with clean water or mild detergent and a wipe with a soft towel will clean the panels. In this method cleaning has to be done, only advantage is cleaning process would be easy.

 Wash Panel: SPV panel array cleaning Robot; http://www.washpanel.com/en/documenti.php; August 2013 [28]. This system is fully autonomous; it has a double programmable functioning through a rain sensor and by use of water jets. It provides a constant and uniform cleaning. The system is modular, with possible supervision and management from remote site. It doesn't require any extra frame, support and additional guides. It can be installed on ground systems, buildings, peaked roof or shed roof. For continuous monitoring it sends text messages to mobiles, allowing command control from remote sites.

Fig. 2.4: Wash Panel cleaning and placing over Solar PV panel

From fig. 2.4, it is clear that the Wash Panel robot is kept over the Solar PV panel, which requires additional attachments on edges of PV panels. Also, it requires continuous outside supply.

 Mark Anderson, Ashton Grandy, Jeremy Hastie, Andrew Sweezey, Richard Ranky, Constantinos Mavroidis, Yiannis P. Markopoulos. "Robotic device for cleaning photovoltaic panel arrays" [29].

In this paper authors have made a solar panel cleaning robot, its design comprises of two motorized trolleys at the edges of panels which provide horizontal motion and a cleaning head driven by a belt and pulley system for vertical motion. Cleaning head comprises of rotating cylindrical brushes to scrub the PV panel and a scraper to remove the dirt solution. As per the design and working of the cleaning robot shown in fig. 2.5, horizontal shifting of the robot is a problem as the wheels skid over the Solar PV, also the weight of the cleaning robot is over the solar PV panel.

Fig. 2.5: Simulated and real time operation of PV cleaner

• Solar Brush: Solar Brush cleans and inspects solar power plants <u>http://www.solarbrush.de/about;</u> August 2013 [30].

It is a robotic cleaning system for Solar PV panels. The robot "SolarBrush" walks over the solar PV panel. It can function upto an inclination of 35 degrees. It is wireless and rechargeable. It is having a cleaning brush which swipes the dust. SolarBrush is light weight of 2.5 kg. As the cleaning method is swiping which may results in stains in the glass of Solar PV panel. Performance is very slow of $1 \text{m}^2/\text{min}$.

Fig. 2.6: Solar Brush Cleaning SPV module Fig.2.7:HECTOR Robot cleaning SPV module

• HECTOR- Cleaning robot system for Heliostats

http://www.sener-aerospace.com/AEROESPACIAL/ProjectsD/hector-cleaning-robotsystem-for-heliostats/en; August 2013. [31]

It is a robotic cleaning system for Heliostat's, which can be used for Solar PV panel cleaning also, as shown in fig. 2.7. It is wireless, Rechargeable and carries water solution tank with itself. It is fused with various sensors which permit it to navigate autonomously without any human supervision. It requires no external power or water supply for its operation; it carries its own batteries and water tank. HECTOR is designed for night and day operation. Its performance is very slow and the weight of HECTOR is over the panel.

• Greenbotics's: GB1; <u>http://www.greenbotics.com/</u>; August 2013 [32].

It is a robotic cleaning system for Solar PV panels. It is wireless and rechargeable. It comprises of rotating cleaning brushes perpendicular to the axis of panel and a wiper system, so that not only it cleans the panel but also clear the dirty water. Hence, effective for all types dust and bird droppings. Also, effective for one axis tracking solar PV panels. As per the design, robot is moving at the edges of the frame of solar PV panel as shown in fig. 2.8.

Fig. 2.8: Greenbotics Solar PV cleaning robot in action

2.2.1 SUMMARY OF THE INDUSTRIAL AVAILABLE SOLAR PV CLEANING SYSTEMS:

S. No.	Cleaning System	Advantage	Disadvantage
1.	Manual	1. Cleaning only when	1. Cost varies subjected to
		required	location and manpower.
			2. Time consuming and
			ineffective
2.	Transparent	1. No mechanical movement	1. Requires high voltage for
	Shield	on the surface of SPV panel to	good performance.
		scratch the protective surface	2. Causes shading when used
			on a PV panel.
			3. Cannot be directly powered
			from the SPV panel.
3.	Electrodynamic	1. Efficient and can be used	1. Needs Digital Signal
	Screen (EDS)	to take away dust from a	Controller (DSC) which is
		variety of surfaces	costly.
		2. No mechanical movement	2. Requires switching devices
		on the surface of SPV panel to	for converters hence more
		scratch the protective surface.	maintenance is required.
		3. Efficient with and without	
		use of external power supply.	
4.	Standing wave	1. Highly efficient at high gas	1. Removal is difficult when
	Electric curtain	pressure.	gas (atmospheric) pressure is
		2. No mechanical movement	below a certain limit.
		to scratch the protective	2. Dust removal capability
		surface.	depends on the size of the
			particles deposited.
5.	Solar Brush PV	1. Automated Robot	1. Heavy weight
	Robot	2. Works up to an inclination	2. Initial cost is high.

Table 1.1: Summary of available industrial Solar PV module cleaning system

		of 35 deg.	3. Requires human
		3. Wireless controlled	intervention
		4. Rechargeable	4. Performance speed is very
			slow
6.	Gekko Solar	1. Self regulating and flexible	1. Limitation of inclination
		uninterrupted cleaning	upto 45 deg.
		operations.	2. Complex gear, belt system.
7.	Gekko Solar	1. Self regulating and flexible	1. Limitation of inclination
	Farm	uninterrupted cleaning	upto 30 deg.
		operations.	2. Complex gear, belt system.
8.	Heliotex	1. Water reaches to every	1. Treated water required.
	Automatic Solar	part of Solar PV modules.	2. Filter has to be change
	Panel Cleaning	2. Helps in cooling of Solar	periodically.
	Systems	PV modules, which increases	3. Huge wastage of water.
		the efficiency.	
9.	Tuff Fab's Nano	1. Long lasting	1. Cleaning is still required,
	Clear		but with less effort.
10.	Hector	1. Compatible, intergrated	1. Performance is slow
		with all supplies.	2. Feeding has to be done
		2. Operational day and night	regularly
11.	Greenbotics: GB1	1. Able to clean dust and Bird	1. Requires continuous outside
		droppings	feed
12.	Wash Panel	1. Able to clean dust and Bird	1. Requires continuous outside
		droppings	feed

2.3 LITERATURE REVIEW ON EFFECT OF DUST ON SOLAR PV PANEL

United States Patent; Transparent Self- Cleaning Dust Shield; Inventors: Malay K. Mazumder, Robert A. Sims, James D. Wilson; Assignee: Board of Trustees of the University of Arkansas, Little Rock, AR (US); Appl. No.: 10/253,625; Patent No.: US 6,911,593 B2; Date of Patent: Jun. 28, 2005.[33]

In this patent paper, inventor has invented a transparent technique for solar PV panel's dust cleaning on self. The shield is a panel of clear non-conducting (dielectric) material with embedded parallel electrodes. The SPV panel is coated with a semiconducting film [34]. Electrodes are attached to a single-phase AC signal or to a multi-phase AC signal that produces a travelling electromagnetic wave [35]. If the electrodes are connected in a three-phase current source to produce a travelling wave by which particles are propelled lengthwise along the panel. If a single electrode is connected to a single phase AC signal, and the panel is vertical or substantially vertical so that the dust particles repelled from the surface of the panel fall by gravity without the need for the travelling electromagnetic wave to sweep the particles away.

• D. Sera, Y. Baghzouz, "On the Impact of Partial Shading on PV Output Power", RES'08, Corfu, Greece. Papers from Conference Proceedings, 2008 [16]

In this paper author has shown that partial shading of a SPV array diminishes its output power capability. The amount of degradation in energy production is often not proportionate to the shaded area. In this paper author has done an experiment to verify the results by partial PV shading on a number of PV cells connected in series and/ or parallel with and without bypass diodes [36].

Partial shadowing only two cells (series connected sub modules) can cause a considerable reduction in output power generated and the amount of loss greatly depends upon which two cells are shadowed.

Fig. 2.9: Series connection of two sub modules (a) Two cells shaded in one sub module, (b) one cell shaded in each module

The maximum power reduction from fig.2.9 (a) and (b) are 50% and 70%, which clearly illustrates that the maximum power production is also proportionate to the non-shaded area of a PV module.

Partial shadowing of two parallel- connected sub modules, the maximum power reduction as shown in fig. 2.10 (b) is same as that of fig. 2.9 (b), that is the power reduced by 70%. On the other hand power reduced from fig.10 (a) by 35% only.

Fig. 2.10: Parallel connection of two sub modules (a) Two cells shaded in one sub module, (b) one cell shaded in each module

 Jacob P. Bock, Jason R. Robison, Rajesh Sharma, Jing Zhang, Malay K. Mazumder. "An efficient power management approach for self cleaning solar panels with integrated electrodynamic screens". Proc. ESA Annual Meeting on Electrostatics 2008, Paper O2. [37]

In this paper author has worked on a particular downfall of Electrodynamic Screen (EDS) [38] and tried to resolve it by providing an integrated approach. An EDS based system requires a high-voltage external power source for its operation, but the EDS can be made self-sustainable with the power output from the PV cell itself. Author incorporates a transparent EDS with a PV array as its power source to make itself sustainable. The block diagram of the system is shown below in fig. 2.11. The three phase high voltages create a travelling wave with a strong translational energy that can move the triboelectrically charged dust particles from one end of the substrate to another. Uncharged particles that may become deposited on the screen soon become charged by polarization of a charge or through induction, allowing it to also be cleared from the surface.

• Atten, P., H.L. Pang, and J.-L. Reboud, *Study of dust removal by standing-wave electric curtain for application to solar cells on mars.* Industry Applications, IEEE Transactions on, 2009. 45(1): p. 75-86.[39]

In this paper author has described about a type of wave generation in Electrodynamic Screens (EDS) [38], also the proposed method had been suggested for Solar Cells on Mars. Author has used the electrostatic charge concept for lifting and transporting charged particles of insulating materials [40]. There are two types of curtains: (a) Multiphase Electric curtains, and (b) Standing wave type electric curtain. Author has spoken for type (b) Standing wave type electric curtain and that to in different climatic pressures keeping in mind the climatic conditions of Mars. As shown in fig. 2.12, two comb type electrodes, one being ground and the other being supplied with ac voltage. In this case, we have a standing wave, and at any point, the electric field has a definite direction and amplitude oscillating at the imposed frequency. A single charged particle oscillates along the field line. For a horizontal setup, it experiences an uprising vertical resulting force which can lift it, and part of it escapes the stressed zone. The main constraint of this technique is, it requires dry state of the surface and for this reason it has been suggested for Mars climatic conditions [41].

• Dr. Ali Ibrahim. "Effect of Shadow and Dust on the Performance of Silicon Solar Cell" Journal of Basic and Applied Scientific Research, 2010. [2]

In this paper author has created a simulated environment for V-I characteristics effect due to dust. Author has chosen a halogen lamp 100W and solar PV of 10 cm X 6 cm for this experiment. Due to gathering of dust on SPV module, short circuit current I_{SC} and open circuit voltage V_{OC} of silicon solar cell were decreased up to 2.78% and 0.863% respectively. On the other hand, effect of shadowing selected location over the solar PV module shows I_{SC} is more decreased in a high percent than V_{OC} .

 K. Watanabe, A. Higo, M Sugiyama, Y. Nakano."Self-assembled SiO2 particle coating on 2 layer anti-reflection films for efficiency enhancement of GaAs PV cells ".<u>Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE</u>, 20-25 June, 2010. Page No. 205-208 [42].

In this paper author suggests for a special type of anti reflection coating (ARC) over the solar PV panels. Owing to the diffraction and light trapping effect [43] caused by a subwavelength size of structure, the reduced reflectance covering a wide-wavelength can be expected at a surface of the photovoltaic (PV) cell [44]. Author in his experiment tried a nano-scale structure fabrication by small-size particles combined with conventional 2 layers ARC on GaAs PV cells. The small-size spherical particles show well aligned self-assembly on the substrate when the solution containing micro-spheres were dried with a proper sheer force. Using the pure water solution of colloidal SiO_2 spheres and an ordinal spin-coating technique, a well aligned mono-particle layer has been fabricated on the 2 layer ARC (TiO₂ and SiO₂) on a GaAs PV cell. In the range of tested particle size, the smaller particle was preferable to avoid scattering loss and provides a larger efficiency enhancement to GaAs PV cells.

Ji Liming, V.V. Varadan. "Fishnet metastructure for efficiency enhancement of a thin film solar cell". Journal of Applied Physics, Volume:110, <u>Issue: 4, Aug 2010, Page No.</u>
 <u>43114-43118</u> [45]

In this paper author proposed embedment of fishnet meta structure in the back passivation layer of thin film SPV cells. Incident light excites a plasmon resonance [46] that results in frequency dependent effective impedance for the embedding layer so that the input impedance fulfills impedance matching condition. Reflection is very little under this condition. Author did detailed experimentation on electromagnetic modeling of the absorption in different layers of the solar cell. 64% of the total absorbed energy at resonance is in the silicon layer and this absorption is evenly disseminated inside the silicon. Based on the enhancement of photocurrent density near the bandgap of a-Si:H, author obtained 14.8% enhancement in total short circuit current at ordinary incidence and the estimated PV efficiency of the solar cell with the fishnet is 7.43% at normal incidence compared to 6.36% without fishnet. The fishnet can be tuned to provide absorption enhancement at any desired frequency where the intrinsic absorption of the semiconductor is low.

 L. Dorobantu, M.O. Popescu, Cl. Popescu, A. Craciunescu. "The effect of surface impurities on photovoltaic panels" International Conference on Renewable Energies and Power Quality, Las Palmas de Gran Canaria (Spain), 13th to 15th April, 2011. [47]

In this paper author has simulated when a cell is covered by deposition, its internal temperature rises and thus it leads to occurrence of losses in Comsol Multiphysics. Thus, the studies on the behavior of photovoltaic cells covered by impurities show that these situations should be evaded as much as possible as inevitable losses occur in the system.

 Cheng –Chuan Chen, Hong –Chan Chang, Cheng –Chien Kuo, Chien –Chin Lin. "Programmable energy source emulator for photovoltaic panels considering partial shadow effect". Energy; Volume 54; Page No. 174-183. [15]

In this paper author has produced a programmable emulator for photovoltaic panels. A even solar illumination model, a partial shaded model with two photovoltaic modules in series and a partially shaded model with two photovoltaic modules in parallel are used [16, 36]. The specification of any kind of photovoltaic panels can be presented by the open circuit voltage,

the short current and the current and voltage respectively, when it is at maximum output power condition, as well as the temperature coefficient of open circuit voltage and the temperature coefficient of short circuit current, even when the photovoltaic panels are made of different materials.

Author has selected two photovoltaic modules in series connection fig. 2.13(a), 25 °C was the setting value of the ambient temperature for both the modules. The maximum percentage error in power amid the theory values and the emulator [36, 48, 49] output is about 5% under a load resistance condition when compared with a non shaded, fully illuminated model.

When the emulator was set up as two photovoltaic modules in parallel connection fig. 2.13(b), keeping other conditions same, the maximum percentage error in power between the theory values and the emulator [36, 48, 49] output is about 2% under a load resistance condition.

Fig. 2.13. (a). Two photovoltaic modules are connected in series (b) Two photovoltaic modules connected in parallel

Prudhvi P, Chaitanya Sai P."Efficiency improvement of solar PV panels using active cooling" <u>Environment and Electrical Engineering (EEEIC)</u>, 2012 11th International <u>Conference on</u>, 18-25 May 2012, Pages 1093-1097 [50].

Reflection of the sun's irradiance usually diminishes the electrical yield of PV modules by 8-15% [10]. The accumulated reflection loss over one day for a fixed tilt-angle of the module depends on the latitude, clearness index (diffuse-direct ratio), surface treatment and the match of refractive indices within the layers of module encapsulation. A glass encapsulated or laminated PV module at a perpendicular incidence angle yields a reflection loss in the range of 4-5% [10]. Water with a refractive index of 1.3, is a viable intermediary between glass ($n_{\text{glass}} = 1.5$) and air ($n_{\text{air}} = 1.0$), it helps in keeping surface clean and reduces reflection by 2-3.6%.

As Efficiency and electrical yield decrease with increased operating temperatures, it is preferred to maintain low module temperatures. To achieve so several techniques have been suggested like mounting water filled tank beneath PV module and due to its high thermal capacity of water in the tank, the PV module temperatures would be low [51-53], Flowing film of water on PV module front: Due to rapid flow of water there would be only a nominal increase in water temperature, the evaporating water further declines PV module's operating temperature [10, 54] water trickling on the front surface of PV module [11], Placing under water solar PV panels [55, 56].

 Malay Mazumder, Mark Horenstein, Jeremy Stark, Peter Girouard, Robert Sumner, Brooks Henderson, Omar Sadder, Ishihara Hidetaka, Alex Biris, and Rajesh Sharma." Characterization of Electrodynamic Screen Performance for Dust Removal from Solar Panels and Solar Hydrogen Generators". IEEE transactions on Industry Applications, Volume 49, Issue 4, July/August 2013. [57]

In this paper author suggested for Electrodynamic Screens (EDS) [38] process for cleaning of solar PV panels. Transparent Electrodynamic screens (EDS), consisting of rows of transparent parallel electrodes embedded within transparent dielectric film can be used for dust removal. When the electrodes are triggered by phased voltage, the dust particles on the SPV surface of the film become electrostatically charged and are removed by the traveling wave

generated by applied electric field. Over 90% of deposited dust is removed within two minutes, using a very small fraction of the energy produced by the panels.

Technique suggested in this paper is good for dry climatic conditions, but it has constraints in humid conditions. Dust is not the only factor, other factors like bird dropping, water stains etc. comes into picture which reduces the efficiency of the Solar PV panels, where the above mentioned technique would not be successful.

 Mark N. Horenstein, Malay K Mazumdar, Robert C Summer, Jeremy Stark, Tareq Abuhamed, Raymond Boxman. "Modeling of trajectories in an Electrodynamic Screen for Obtaining Maximum Particle Removal Efficiency". IEEE Transactions on Industry Applications; Volume 49, Issue 2; March/April, 2013. [58]

In this paper author has suggested for efficiency improvement of Electrodynamic Screens (EDS)[46]. One unpredicted result is the chaotic behavior of larger particles which jump sporadically back and forth and gradually migrate in the direction of the imposed electrostatic surface wave, shown in fig. 2.14. There are various factors which come into play like electrode width, electrode spacing, electrode voltage and excitation frequency. To assess the effects of these changing parameters, so as to determine the optimal values for a given particle size and charge, author has suggested a discrete-time-step simulation, to compute the motion of a single particle due to various forces exerted on it.

Fig. 2.14: Surface Electrodes energized by phased voltages produce an electrostatic travelling wave for lifting and transporting dust particles

Author simulated the particle charge-to-mass ratio q/m, and as per the mean value provided a baseline for use in the trajectory simulations. Fig. 2.15 shows a computed particle trajectory obtained by simulating.

Fig. 2.15. Simulation model for calculated particle trajectory.

2.3.1 SUMMARY OF DUST EFFECT ON SOLAR PV PERFORMANCE FOR THE PERIOD OF 1942 TO 2012.

Table 2.2: Summary of Dust effect on Solar PV performance for the period of 1942 to 2012.

Reference	Locatio	Type of	Period of	Key findings	Comments and
	n	solar device	study		conditions
Hottel and	Boston,	Solar–	3 months	Maximum degradation	A correction factor
Woertz [59]	MA,	thermal		during the test period was	of 0.99 (for a 45" tilt
	USA	collectors		4.7%	angle)
Dietz [60]	NY,	Glass	3 months	At tilt angles between 0"	
	USA	samples		and 50", the reduction in	
				solar radiation due to dirt	
				was 5%	
Garg [61]	India	Solar	30 days	For glass, 30%	A correlation factor
		collectors		transmittance reduction for	of 0.92 was deduced
		(glass		horizontal and 2% for	from the study (45"
		and plastic		vertical positions. Greater	tilt angle); higher
		covers)		reduction was found for	correlation factor for
				plastic	plastic than for glass
Sayigh[62]	Saudi	Solar	25 days	Heat-collection reduction	
	Arabia	collectors		of 30% after 3 days	
				without wiping	
Anagnostou	Clevelan	PV modules	1 year -	Degradation is site	Local condition is
and	d, OH,			dependent.	most damaging
Forrestieri	USA			Washing does not eliminate	
[63]				all degradation.	
				Permanent loss in	
				maximum power reaches a	
				steady value after several	
				hundred days	

Hoffman	Pasaden	PV module	Laborator	Test procedure for two	
and Ross	a, CA,	(glass)	y testing	field-related problems:	
[64]	USA			surface soiling and	
				encapsulate delaminating	
Pettit,	New	Solar mirror	1 month	The portable directional	Method to determine
Freese, and	Mexico,			reflectometer used to	solar-averaged
Arvizu [65]	USA			measure the specular	reflectance
				reflector loss due to dust	loss from a single
				accumulation can be	measurement at 500
				limited to a single	nm
				wavelength	
Blackmon	Californ	Heliostat	6 months	Washing heliostat by spray	
and	ia &			is feasible, and rain and	
Curcija	New			snow could effectively	
[66]	Mexico,			clean it	
	USA				
Berg [67]	New	Heliostat	5-6	High-pressure water spray	Mobile system
	Mexico,		weeks	can recover 95% of the	(automated)
	USA			reflectance loss	
Freese [68]	New	Mirrors	7 months	Wind can cause a slight	Useful correlations
	Mexico,			decrease in the reflectance.	with wind, rain;
	USA			Melting snow and rain are	cleaning cycle
				effective in cleaning dust	experiments
Murphy	Lexingt	PV module	18	Measurement of soil	
and	on, MA,	(glass)	months	accumulation and model	
Forman	USA			cleaning using gloss meter	
[69];Forma					
n [70]					
Nimmo,	Saudi	Solar	6 months	26% and 40% reduction of	
Saed [71]	Arabia	collectors&		efficiency from solar	Dry conditions
		PV		collector and PV panels,	

		modules		respectively	
		(glass)			
Hoffman	Californ	PV module	17	To identify key	Outdoor exposure
and Maag	ia, USA	(glass)	months	environmental factors that	testing for long
[72]				govern	durations is the
				soiling levels	most effective means
					of evaluating soiling
Roth and	New	Mirrors		Reflectance as function of	Reported
Pettit[73]	Mexico,			particle size/scattering	effectiveness of
	USA			effects. Small particles are	surface coatings and
				most significant	electrostatic biasing
				scattering source (less than	for mitigation. Wind
				1 micro meter)	tunnel studies
Cuddihy	Pasaden	PV module	Theoretic	Describe known and	Dust
[74]	a, CA,		al study	postulated mechanism of	morphology/size data
	USA			soil retention on surfaces	
Pettit and	New	Mirrors	10	Deposited particles are	Force mechanisms
Freese [75]	Mexico,		months	much more effective in	proposed and
	USA			reflecting particles than	investigated for
				absorbing it	dust adhesion
Zakhidov	USSR	Mirrors	Experime	Strong wind with driven	
and			nt	dust causes damage to the	
Ismanzhan				surface of the mirror	
ov [76]					
Wakim [77]	Kuwait	PV modules	6 days	17% reduction in efficiency	
		(glass)		of module	
Roth [73]	New	Mirrors	Up to 10	Reflectance losses as	Differences in
	Mexico,		months	function of wavelengths of	particle distributions
	USA			incident light and of	between day and
				particle size/distribution	night due to soluble

					nature of the
					particles.
					Morphology data.
					Adhesion forces.
Bethea et	Texas,	Solar	Laborator	Reflectivity expected to	Simulated studies;
al. [78]	USA	concentrator	У	decrease by 2.4% per year	Accelerated lifetime
			experime	due to dust storm	test development.
			nt	conditions	
Sayigh et	Kuwait	Glass,	38 days	64%, 48%, 38%, 30%, and	Dust particle
al. [79]		plexiglass,		17% transmittance	topography, dust size
		stainless		reduction for	evaluations
		steel,		0",15",30",45", and 60"	
		mirrors		tilt angles,	
				respectively	
El-	Saudi	CPV	1 month	Open-circuit voltage did	Concentrating PV
Shobokshy	Arabia			not change, and short-	study; effect on dust
et				circuit current and cell	accumulation on cell
al.[80];Zak				efficiency showed a large	temperature
zouk [81]				change with dust deposition	investigated;
					Modeling of series
					resistance effects
Berganov et	USSR	PV cells	6 months	Effect of soiling on solar	
al. [82]				cell power production is	
				High	
Bajpai and	Nigeria	Silicon solar	4 months	Poor efficiency due to	
Gupta [83]		cell		scattering of incoming	
				radiation by dust particles	
Michalsky	New	Pyranomete	2 months	1% reduction for the	
[84]	York,	rs		exposed, not-cleaned	
	USA			Pyranometer	

Ryan et al.	Oregon,	Solar	6 years	Unwashed solar cell array	Fluctuations in
[85]	USA	module		has degraded at a rate	degradation (rates)
		array		about 1.4% per year	do exist and
		(glass)			long-term testing of
					degradation is
					needed
Said [86]	Saudi	Solar	1 year	7% reduction per month for	
	Arabia	collectors&		PV panels and 2.8% to	
		PV		7% for solar collectors	
		modules			
		(glass)			
Deffenbaug	6-sites,	Parabolic		Long-terms exposure	Used various sites to
h et al. [87]	USA	solar		testing for reflective and	establish
		collectors		transmissive loss	independence
				evaluation. Developed	of methodology to
				prediction	any specific location.
				method based upon	(Oregon, Georgia,
				modeling of results. Wash	Texas (2), Ohio,
				frequency and optical	California, New
				degradation rates are used	Mexico)
				as primary inputs to model	
				long term observations.	
Al-Alawy	Baghdad	Horizontal	9 years	Higher percentage of	Good correlations
[88]	, Iraq	surface		cumulative dust leads to an	with wind speed and
		(glass)		energy reduction of 50% or	dust
				more	accumulations; good
					base of daily and
					hourly solar radiation
					used for models

Nahar and	India	Solar	18	Annual drop in	Examined glass,
Gupta [89]		collector	months	transmittance for daily	vinyl, acrylics—
				cleaning cycle was 4.26%,	glass is superior
				2.94%, 1.36% and for	under dust
				weekly cleaning cycle was	conditions. The data
				15.06%, 9.88%, 3.28% for	raise concerns
				glass at tilt angles of	about locating large
				01,451, and 901	solar power plants
					without including
					strict cleaning plans
Hassan and	Kuwait	Glass	38 days	64%, 48%, 38%, 30%, and	Spectral report that
Sayigh				17% transmittance	all wavelengths are
[90]				Reduction for 0° , 15° , 30° ,	affected
				45° and 60° tilt angles,	
				respectively	
Pande [91]	India	PV module	1 year	Reduction in current value	
		(glass)		due to dust was up to	
				30%	
Goossens et	Israel	PV module	Laborator	Wind direction and panel	Wind tunnel
al. [19]		(glass) and	y work	orientation have a severe	experiments.
		mirror		effect on dust deposition	Correlated these with
				and distribution. A wind	real conditions
				velocity of greater than 2	
				m/s has only a minor effect	
				on dust distribution	
El-	Saudi	PV modules	Laborator	Dust material, size and	PV surface prepared
Shobokshy	Arabia	(glass)	y work	deposition density has a	under zero wind
and				strong effect on loss of	velocity and
Hussein				output power	no natural desert dust
[20]					was used

Alamoud	Riyadh,	PV module	1 year	Efficiency decreased by	Compared module
[92]	Saudi	(glass)		5.73% to 19.8% depending	specifications to
	Arabia			on the type of the module	manufacturer's
				when exposed to outside	claims (differences).
				environment	Hot, arid
					conditions
El-Nashar	United	Evacuated-	1 year	Monthly percentage in	Hourly and monthly
[93]	Arab	tube		glass transmittance decline	data acquired
	Emirates	collector		is seasonal: 10% in summer	
				and 6% in winter.	
				Reduction of 70% of	
				collector performance	
				when left without cleaning	
				for one year	
Bowden et	Sydney,	PV roof	Laborator	Dust affects the energy	Part of a larger study
al. [94]	Australi	tiles and	y work	conversion to a small	on performance of
	a	concentrator		degree. Examined effect of	PV products for
		S		dust on the loss in	rooftops. Data for
				internal reflectance of the	coastal and in-land
				CSP roof units. Total	locations/
				losses less than 1.3%	residential/commerci
					al
Adanu [95]	Ghana	PV system	4 years	Effect of dust particles in	Time of day data
		(glass)		atmosphere generally	reported. Cleaning
				lessens the solar irradiance	by wiping of module
				and the energy output	surface
				from the PV array	
Kattakaya	India	PV module	Laborator	The loss of power due to	Careful analysis of
m et al. [96]		(glass)	y work	accumulation of dust and	IV characteristic
				the increase in temperature	from operating PV
				of the panel can be	field. Provides

				significant	information on
					instrumentation for
					monitoring
Beckeret	Cologne	PV cells	Laborator	The pollution leads to a	This pollution has
al. [97]	,		y work	partial shadowing of the	minor effects on PV
	German			cells reducing the output	operation
	у				(Less than 4%)
Hammond	Arizona,	PV module	16	Soiling effect on PV	Extensive soiling
et al. [98]	USA	(glass) and	months to	module increase as the	data on PV modules
		radiometer	5 years	angle of incident increases.	and radiometer
				Losses increased from	outputs
				2.3% at normal incident to	
				4.7% at 241and 8% at 581.	
				For radiometer, lost more	
				than 2% due to soiling, and	
				up to 8% due to bird	
				droppings.	
Offer and	Israel	Mirrors	1 week in	Airborne particle	Desert testing,
Zangvil			May,	accumulation on solar	including dust storm
[99]			1990	mirrors decreases the	data
				reflectivity and the mirror	
				efficiency. Reflectivity	
				reductions greater than	
				90%	
Goossens,	Israel	PV modules	Laborator	Fine dust deposition on the	Reported I–V
Van		(glass)	y work	cell has significant effect	characteristics as a
Kerschaeve				on power output.	function of the
r [100]				Considered effects of due	dust density
				to air borne dust	
				concentration and wind	
				velocity.	

				Reported losses in solar intensity on cells, open- circuit voltage fill factor	
				short-circuit current and	
				power as function of	
				accumulation time. Power	
				losses greater than 95%	
Mastecbaye	India	Glass	30 days	Transmittance dropped	
va and				from 87.9% to 75.8% over	
Kumar				the 30-day period	
[101]					
Biryukov[1	Israel	Mirror	Laborator	For measurement of dust	Used three different
02, 103]			У	influence on reflector, the	techniques to
			experime	experiment showed the	determine dust
			nts	intensity of concentrated	effects on specular
				light; confirmed result of	properties of
				measurement with	parabolic
				specular reflectometer	concentrator
Asl-	Tehran,	PV system	10	Air pollution can diminish	PV module output
Soleimani	Iran		months	the energy output of solar	monitored as
et al. [104]				module by more than 60%	function of time
				in a city like Tehran	of day under
					"pollution"
					conditions
Hegazy	Egypt	Glass plates	1 year	Solar transmittance as	Plates purposely not
[105]				function of tilt angles.	cleaned over 1-
				Vertical plates had dust	month
				with diameterso1mm	periods. Compares
				only. Compared a	data to reports from
				calculated "dust factor"	India and Kuwait
				(correction factor) to the	

				observed one. Loss in	
				transmittance typically 75-	
				80% over a month's	
				exposure	
El-Nashar	Abu	Evacuated-	1 year	Drop in transmittance (0.98	Application is a solar
[106]	Dhabi,	tube		under "clean" condition to	desalination plant
	United	collectors		0.70), causing as much as	(1864 m ² collector
	Arab	(glass)		40% drop in distillate	field); Seawater
	Emirates			production. (Need to	distillation with 120
				supply 38% more power	m ³ /day capacity
				from conventional	
				electricity generation)	
Badran	Arizona,	Mirrors of	3 years	Coating for 3 years	Cleaning methods
[107]	USA	telescope		exhibited 5%–7% drop in	developed for
				reflectivity at 310 nm and	Cherenkov
				no decease in other	telescope at Mt.
				wavelengths. Water	Hopkins.
				washing is the best	
				cleaning	
				method	
Hassan et	Saudi	PV modules	6 months	33.5% and 65.8%	
al.	Arabia	(glass)		reductions in efficiency	
[108]				after 1 month and 6	
				months.	
Kobayashi	Tokyo,	PV module	Laborator	Changing the aspect ratio	Primarily ''dirt
et al. [109]	Japan	(glass)	У	of PV cell used for PV	spot" analysis; Some
			experime	module results in	correspondence to
			nts	degradation output of 80%	the shape of the solar
				or less with 3% of spot dirt	cell in the module.
				on the module area.	Also, studied cell
					circuit-configuration

					effects.
Elminir et	Helwan,	PV cells and	7 months	Decreases in PV output of	Provides information
al. [110]	Cairo,	glass		about 17.4%/month	as a function of tilt
	Egypt				angle.
					Includes a chemical
					analysis of the dust.
Kimber et	Californ	PV system	1 year	"Soiling" study for utility-	Restorative nature of
al. [111]	ia and	(grid-		connected PV system.	rainfall well
	South-	connected)		Efficiency and energy	documented.
	western			losses (typical 0.2% per	Various locations
	USA			day	provided in these
				without rainfall)	portions of
					USA.
El-Nashar	Abu	Evacuated-	1 year	Seasonal losses due to dust	Updated and
[112]	Dhabi,	tube solar-		at 14%–18%	seasonal data
	United	thermal			following El-Nashar
	Arab	collectors			(2008); solar
	Emirates	(glass)			desalination plant;
					automated data
					Acquisition.
Al-Helal	Saudi	Polyethylen	13	Reduction in global solar	GSR and PAR
and	Arabia	e covers	months	radiation was 9% after	transmittance
Alhamdan				1 month, then reduced to	evaluations;
[113]				5% after 11 months due to	application to
				rainfall in the area	greenhouse
					enclosures.
Clark et al.	MD,	Lunar dust	Laborator	Design a compact device	
[114]	USA	control	У	less than 5 kg mass and	
			experime	using less than 5	

			nts	W to harness the dust for	
				sampling as part of the	
				extended exploration of	
				Mercury, Mars, or other	
				regions of the solar system	
Vivar et al.	Madrid,	CPV system	4 months	CPV system more sensitive	Dust is critical factor
[115]	Spain;	(various		than flat-plate PV to	for CPV
	and	lenses)		dust accumulation. Up to	performance
	Canberr			26% loss after 4 months	
	a,			exposure	
	Australi				
	a				
Yerli et al.	Istanbul,	PV modules		Derating parameters	750 Wp system
[116]	Turkey	(glass)		reported for temperature	
				and	
				dirt; dust has most	
				significant effect	
Mani and	Bangalo	PV module	Review	The paper includes two	Detailed review
Pillai [117]	re, India	and system	article	phases of research	provides excellent
				appraisal. Phase I from	guidance for
				1960 to 1990, phase II for	cleaning and
				post 1990. Table has been	mitigation cycles.
				developed to guide in the	
				identifying appropriate	
				cleaning/ maintenance	
				cycle for PV systems in	
				response to the prevalent	
				climatic and environmental	
				conditions	

Miller and		CPV	Review	Primary look at PMMA	Comprehensive
Kurtz [118]		Fresnel	article	lenses (some silicone-on-	examination of
		lenses		glass). Detailed	soiling of Fresnel
				examination of the loss	lenses for CPV.
				mechanisms and durability.	Paper has much
				Soiling review included	wider
				definitions, variation of	examination of the
				reflectance with time,	durability and
				inclination (tilt),	degradation issues
				wavelength, the	with the Fresnel
				mechanisms of adhesion	lenses beyond the
				and accumulation,	dust
				moisture, particle size and	issues.
				distribution, and	
				prevention/soiling	
Ju and Fu	Chongqi	PV modules	1 year	PV "fouling coefficient"	For PV project,
[119]	ng,	(glass)		proposed (0.985 during	proposed important
	China			rainy season and 0.958	considerations for
				during dry season)	dust in 3 stages of
					development:
					(1) Planning;
					(2) Design, and
					(3) Operation
Ibrahim [2]	Laborat	Solar cells	10 days	Current losses of greater	Also studied
	ory	(large-area		than 13% and voltage	shadowing of cells
	Tests	10 cm*6cm)		losses of greater 0.86%	
	and			(5%–15% loss in peak	
	Kuwait			power)	
Cabanillas	Hermosi	Crystalline	90 days	4%-7% reduction in power	Particle-size analysis
and	llo,	and	(August	for crystalline Si modules	as part of study.
Munguı'a	Sonoro,	amorphous	through	and 8%–13% for	Careful analysis of

[120]	Mexico	Si PV	Decembe	amorphous-Si modules.	relationships
		modules	r)	Demonstrated sensitivity to	between particle size
				module technology	and
				type	volume percent of
					that size occurring.
Sulaiman et	Malaysi	PV modules	Laborator	18% or reduction in peak	
al. [121]	a		У	power when depositing	
			experime	dust on PV module. 6%	
			nt	power reduction difference	
				between mud and talcum	
				deposition	
Zorrilla-	Spain	PV module	1 year	In dry seasons, energy	Provided simple
Casanova		(glass)		losses exceed 20% over	model, simulated
et al. [122]				3-month periods. Annual	with ray-tracing
				average losses in PV	methods to explain
				output were 4.4% (with	the behavior of dust-
				natural cleaning by rain).	induced loses in solar
				Proposed regular, periodic	PV modules. Looked
				cleaning scheduled for	at both
				modules	fixed and tracking
					systems of PV
					panels;
					Evaluated time-of-
					day losses.
Pravan et	Italy	PV system		Investigated two 1-MW PV	All measurement
al. [123]		(1 MW)		systems; Soil type and	under STC.
				washing technique control	Regression model
				the losses. 6.9% loss with	used (superior to
				sandy soil and 1.1% with	performance ration
				more compact soil	which is
					influenced by

					seasonal variations in
					temperature
					and plant
					availability)
Jiang et al.	China	PV module		Dust deposition layer 0 to	Note that modules
[124]		(glass)		22 g/cm	encapsulated with
				2	ероху
				, PV efficiency decreased	(organic) degrade
				by 26% (linear	more.
				relationship). No	
				difference between cell	
				types	
Kaldellis		PV	Modeling	Examined micro grids.	Modeling study for
and Kapsali		generators		Distributed systems are	grid
[14]				shown to have as much as a	
				12% better performance	
				under dust conditions than	
				a central station.	
Qasem et	Kuwait	CdTe thin-	Outdoor	Examined effect of dust	Showed effects of
al. [125]		film PV	tests and	densities o performance (in	moisture/dust in
		modules	modeling	vertical and horizontal	photos.
				module configurations),	Provided modeling
				with latter having increase	of IV characteristics
				risk of hot spots with	with dust
				dust deposition	deposition (using
					PSPICE)
Al Busairi,	Kuwait	Glass	Outdoor	Demonstrated that the	Loading depends on
Moller		surfaces on	tests	decrease in power from PV	the tilt angle and is
;Al-Busairi		various PV		module depends on the	non-uniform over
and Al-		modules		angle between the incident	module surface (time
Kandari				sun (photons) and the	of day

[126]				normal to the panel	dependences)
Mekhilefet	Malaysi	Solar cells	Laborator	Examined the literature for	Dust containing
al.[127]	a	and modules	y and	dust effects on	minute pollens,
			modeling	Performance as function of	bacteria, fungi,
			(2-month	tilt. Reported average	microfibers (carpets
			periods)	drop in performance	and fabrics),
				(power): US 1-4.7%; Saudi	vehicular and
				Arabia 40%; Kuwait 65%,	volcanic activity
				Egypt 33.5-65.8%,	(specific to this
				Thailand 11% (1 month)	region) Effects of
					moisture.
Mohamed	Libya	PV Modules	Outdoor	PV modules exposed for a	Object of study is to
and Hasan			Testing	period from February	evaluate the cleaning
[128]				through May in Sahara	needed to keep the
				environment. Reported	PV output at a
				significant though gradual	sufficient level.
				reduction in power.	Weekly washing
				Cleaning procedures.	(water) kept power
					loses in the 2%–5%
					Range.
Qassemet	Kuwait	PV Modules	Outdoor	Investigated effect of dust	Provided interesting
al. [129]			Testing	on PV modules with	information on the
				respect to concentration	spectral effects of the
				and spectral transmittance.	dust. Showed that
				Examined a-Si:H, CIGS,	because of this,
				and	wide-band gap
				crystalline Si technologies	technologies are
					affected more than
					lower band gap
					technologies.

2.3.2 SUMMARY OF STUDIES USING FORCED AIR (BLOWING) WITH WATER MIST AND ULTRASONIC TRANSDUCER ASSISTS [130].

Technique	Medium	Effectiveness	Observations and constraints
Vortex	Air	Good	Requires close proximity to surface (0.30" or less for a
nozzle			typical 0.10" nozzle); lifecycle costs of cleaning
			about the same as using solution (water plus detergents)
Converging	Air with	Good to very	Recovery of reflectance to 99% of original for mirrors.
nozzle	water mist	good	10-cm separation from the surface for cleaning nozzle
	Injection		with 10 psig air. Water usage 2.14 mL/min (minimal
			water use)
Ultrasonic	Air with	Very good	Appreciably enhances the cleaning process of a mirror
transducer	ultrasonic		than with air blast alone (about 2% improvement).
with	energy assist		Transducer separation from mirror ~41 mm. Concluded
nozzle			to be best approach with improvement of
			transducer technology

	Table 2.3: S	Summary	of Forced a	ir blowing	technique
--	--------------	---------	-------------	------------	-----------

2.3.3 SUMMARY OF MITIGATION APPROACHES TO REMOVE OR PREVENT DUST ACCUMULATIONS [67, 131-133]

Table 2.4: Summary of Mitigation Approaches

Strategy	Description	Focus
Deterrence: Keep dirt from	Uses noncontact, continuous techniques.	New materials development;
settling and adhering to the	Material and design intensive.	design and materials
surfaces(preventative)	Durability and lifetime concerns. No	
	labor. Timescale: Mid- to long-term	
Washing: Wash off the dirt	Involves frequent washing with detergent	Primarily based on existing
with water or low surface	solutions, labor intensive, environmental	commercial products;
energy detergent-type	impacts such as water usage, quality and	operation and maintenance
solutions before strong	disposal of waste water. Labor intensive	

chemical or mechanical	(possible automation). Time scale: Short-	
bonding can develop	term and immediate	
(restorative)		
Cleaning: Use chemical or	Mechanical or chemical supplements to	Chemistry understanding and
mechanically active cleaning	washings. Design intensive (i.e.,	design; operation and
techniques capable of	automated high-pressure washers).	maintenance
breaking the chemical and	Concerns about damage. Labor intensive	
mechanical bonds	(possible automation). Timescale: Short-	
(restorative)	term and immediate	
Surface modification:	Surface modifications or a substitute	Physics and chemistry
Modify the surface	surface. Substitute surfaces can be	understanding; design and
(treatments, coatings, films)	permanent or temporary coatings such as	materials
so that strong	surfactants that can be periodically	
bonding cannot	restored. Materials transmission and	
develop(preventative)	interfaces important; durability and	
	service lifetime. No labor. Timescale:	
	Long-term	

2.3.4 GENERAL RECOMMENDATION OF MITIGATION MEASURES AGAINST IMPACT OF DUST ACCUMULATION ON SPV PERFORMANCE.

Table 2.5: General recommendation of mitigation measures against impact of dust

accumulation on SPV performance.

Climatic zone and	Conditions influencing SPV	Recommended cleaning cycle to
Characteristics	performance and dust deposition	mitigate impact of dust
Group-I: Low	Wet- dry and the dry tropical climate.	High annual precipitation could
Latitudes-	Low latitudes require low tilt in PV	reduce dust accumulation (by
Comprises mainly the	systems for maximum solar gain, but	periodic washing).
wet, wet tropical.	lower tilts will tend to accumulate	
Average temperature:	higher dust deposition.	Weekly cleaning recommended
20-34 °C		during dry spells and may be altered

Annual precipitation:	Tilts higher than latitude recommended	based on intensity of dust
> 250 cm	to reduce dust accumulation.	accumulation.
Latitude Range:		
10°S to 25°N	High annual precipitation could	
	minimize dust accumulation.	
	Trade winds dominate during the dry	Weekly cleaning recommended for
Wet dry tropical	season; blow from the north $-$ east in the	moderate dust accumulation; daily
Temperature range:	northern hemisphere and vice versa.	cleaning recommended in case of
20 – 30 °C		intense dust accumulation.
Annual Precipitation:	PV systems with higher tilt	
> 150 cm	recommended. PV panels to be oriented	
Latitude Range:	to benefit	
15° to 25° N and S		
Dry Tropical		
Temperature range:		
20 – 49 °C		
Annual Precipitation:		
15 cm		
Latitude Range:		
15° to 25° N and S		

2.3.5 SUMMARY OF TECHNIQUES INVESTIGATED FOR PREVENTING DUST ACCUMULATION ON SOLAR SURFACES (REFLECTIVE AND TRANSMISSIVE).

Table 2.6: Summary of techniques investigated for preventing dust

accumulation (reflective and transmissive)

Technique	Comment
Stowing (inverting) for	May be ineffective because of time constants for stowing arrays; not

Protection	applicable for fixed-axis arrays.
Aerodynamic streamlining	Prevention of turbulent eddies and dead spots; special engineering required
Electrostatic biasing	Several hundreds to thousands of volts with normal electric field rejects
	particles; less effective with moisture (cementation)
Vibrating the surface	Accelerates the surface motion until particles can no longer move due to
	inertia; damage potential with long-term use of techniques (e.g., contacts)
Thermally induced air	Boundary type of phenomenon used on astronomical telescopes; reliability
currents	and cost are issues; potential for damage ("sand blasting")

2.4 RESEARCH GAP

Current labor-based cleaning methods for photovoltaic arrays are costly in time, water and energy usage and lack automation capabilities. Existing solutions are also dependent on geographical terrain, area of application. Depending on the above mentioned factors, existing solutions can be further compared on the basis of cost, ease of use and performance rate etc. The existing solutions are not universally applicable for all environmental conditions.

Technology	Method	Merits/Demerits
Water Sprinkler	Water is only been sprinkled to	Excessive loss of water
	Solar PV panels. Sprinklers are	Spreading of water/ Reach is not uniform
	fixed at a definite position on the	Economically not viable for Solar PV plants
	side of Solar PV.	Unless demineralized water is used, it will
		leave traces.
Human Effort	With the help of wiping and	Costly as person has to be a technical one
	cleaning material, Solar PV	Reach is not uniform
	panels are cleaned.	
Existing Cleaning	Rolling cleaning heads are rolled	Cleaning robot weight is directly put over the
modules available	over the Solar PV panel with the	Solar PV panels.
(like Gekko Solar,	help of robots kept over the	Power consumption is more.

Table 2.7: Comparison between different techniques used for Solar PV Cleaning/ protection

Gekko Solar Farm	panels.	Performance area is less.
etc.)		
Strowing (inverting)	To avoid dust accumulation	Ineffective because of time constants for
for protection	during night or dust storm,	stowing arrays
	movable type arrays are inverted.	Not applicable for fixed array type
Vibrating the surface	Vibrations are provided by	Damage potential with long term use of
	special mechanical-electrical	techniques (e.q. contacts)
	instrumentation for the device and	
	activating it during dust storms	
Electrostatic Biasing	Several thousands of volts is	Less effective with moisture concentration.
	applied which repel the charged	
	particles.	
Proposed Robotic	Separate sprinkling and wiping	Minimum consumption of water
arm	units on cleaning head.	Power consumption is less
		Performance area is more

The above table comprises of the comparison between present technology and the proposed technology. The table discusses the methods used, merits and demerits of both the technologies. The existing technologies are specified to a particular climatic condition but are not suitable for generalized climatic conditions.

2.5 **OBJECTIVES**

The research aims at making an Autonomous Solar PV panel cleaning system:

- To optimally design a solar panel cleaning robotic arm which will clean the SPV's using optimum resources.
- * To develop and validate the mathematical model of Solar Panel cleaning robotic arm.
- Installation and performance analysis of the designed Solar panel cleaning robotic arm for cleaning SPV Modules and gathering real time data.

CHAPTER 3

EXPERIMENT DESIGN

3.1 PROBLEM DEFINITION AND RESEARCH QUESTIONS

The literature review discusses that there has been considerable research focused on the study of soiling effects on SPV modules and partial cleaning methods have been developed to counteract the situation. As the world is begin to prepare for a transition from fossil fuel (non- renewable) based energy sources to renewable sources, where solar energy is likely to be used in large scale. Despite low energy density of SPV Panels, it is the easiest way to collect and use the Solar energy. However SPV installation sites are wide open and easily susceptible to dust, sand etc, which deteriorate the expected performance of SPV modules. Furthermore, there are a variety of cleaning methods and technologies available for SPV plant operators to choose from, each with its advantages and disadvantages. Choosing the optimal method to clean PV panels over the lifetime of the power plant could be challenging due to the presence of several uncertainties such as operating cost variations, PV plant performance variation, soiling unpredictability, and lack of comparative field data regarding the different cleaning methods. This brings up the following questions:

- i. Is it worth investing in cleaning of PV plants in arid regions?
- ii. If worth, how often is it economically feasible to clean PV modules?
- iii. What overarching factors should we consider when choosing the most appropriate cleaning method?

3.2 OVERVIEW OF TEST BED

- i. Analysis Period: 1 Month (4 weeks/ 6 days per week)
- ii. SPV Plant/ Test Bed Capacity:
- iii. Module Type (with surface area):
- iv. Mounting type (and Latitude angle): Fixed- Tilt; 29.8°.
- v. Test Bed Layout: Two Rows each with one module.
vi. Access to Water and Runoff Measures: Access to Fresh water is available on site while full measures were taken to handle water runoff, such that concerns about soil and ground water pollution in the vicinity of the PV plant are minimal.

3.3 DETAILS OF SOLUTION PROCEDURE

The steps of the solution procedure are discussed in more detail as follows:

3.3.1 ESTIMATION OF SOILING EFFECTS

Estimating the consequence of soiling on the SPV modules is an important component of this research as it determines the necessity and cost of using robot from the enhanced performance of SPV modules. Furthermore, determining the energy lost, consequent economic and environmental implications associated with it, cleaning frequency are the other estimates. Following points have been observed about soiling of SPV modules from the literature review:

- i. Dust deposition density has approximately a linear relationship with reduction of efficiency.
- ii. Accumulation of dust and consequent reduction in efficiency increases with exposure time in absence of natural or artificial cleaning.
- iii. SPV module efficiency diminishes with the type of dust on it.
- iv. Soiling levels depends on the surrounding environment and source of pollutants.
- v. SPV modules in the same location but with different orientation have different dust deposition densities.

3.3.2 APPROACH

In this project we can divide the methodology in two parts as follows:

S.No.	Mechanical Aspect	S. No.	Control Aspect
1.	Robot manipulator and end effector	1.	Control System design
	design		

Table 3.1: Mechanical and control aspect in Research methodology

	Design of low cost manipulator	• Study of DC Geared Motor		
	with less complexity			
	 Separate Stress , Strain 	Study of bidirectional		
	Analysis of Robotics arm,	Encoders and Interrupts		
	Base			
	Selection of material.	Study of DC Servo Motor		
	➢ Fabrication of Robotic Arm	Driving and exchanging data		
		wirelessly of microcontrollers		
		in SPI mode		
2.	Automated Rail guided system	Study and Testing of		
		Ultrasonic sensor		
	Design of low cost rail guide	 Incorporating of ultrasonic 		
	system with less complexity.	sensor in rail guide system for		
		navigation.		
	 Stress, Strain Analysis 	Study and testing of touch		
		screen LCD		
	 Incorporating of ultrasonic 	Designing of GUI for touch		
	sensor in rail guide system for	screen		
	navigation.			
3.	Fabrication of Robotic Arm, Rail	• Study of chain sprocket and gear		
	Guided system etc.	assembly for overall system		
4.	Site construction for Solar PV and Rail	• Analysis of all parameters, block		
	setup.	diagram and transfer function		
		design.		
5.	Integration of mechanical and control aspects.			
6.	Testing and evaluation of robotic arm.			
7.	Comparative study of performance and e	fficiency of standard cleaning method and		
	cleaning by robotic arm.			
8.	Physical observation (removal of dust particles, effect of dew drops, rain fall) of surface			
	of panel to check the performance of robot for further improvement.			

3.4 CONFIGURATION OF SPCRA

The control of SPCRA links is achieved using joint actuators. There are basically three types of robot actuators available: hydraulic, pneumatic and electric motor [70]. As per the requirement and advantages of using electric motor, we opt for DC motors In below table 4.2 key advantages and disadvantages of actuator selection has been described[134].

Hydraulic		Electric Motor		Pneumatic		
Adva	antages:	Adva	Advantages:		Advantages:	
i.	Good for large robots	i.	Good for all sizes of robots.	i.	Inexpensive and	
	and heavy payloads.	ii.	Good for high precision		simple	
ii.	Can work in a wide		robots.	ii.	Good for on and off	
	range of speeds	iii.	High power conversion		applications.	
iii.	Self-lubricating		efficiency.			
Disadvantages:		Disadvantages:		Disadvantages:		
i.	Viscosity of oil varies	i.	Needs gears.	i.	Low power to weight	
	with temperature.	ii.	Needs break.		ratio.	
ii.	Very prone to dirt and	iii.	Backlash and elasticity.	ii.	Fluid compressibility	
	other foreign material in				errors.	
	oil.					
iii.	Low power conversion					
	efficiency.					

Table 3.2: Robot Actuators [134]

The hydraulic actuators are suitable for heavy payload robots, but are susceptible to dirt, therefore they are not suitable for SPV cleaning. Pneumatic actuators are low power consuming type and have fluid compressibility but are not proper responsive towards contraction and rarefaction, hence not suitable for SPCRA. The electric motor advantages outweigh its disadvantages and also after reviewing commercially available articulated robot manipulators, electric motor has been chosen.

SPCRA consists of a robotic arm which is been powered with worm geared 12 V DC servo motor, it is having 4 DOF and is mounted with a base which is kept over a Rail guided platform. Base and Rail guided platform is coupled with a geared system which is been powered via another side shaft 12V DC geared motor. Chain sprocket assembly system is kept on the arm which is been powered by a side shaft 12V DC geared motor with bidirectional encoder fitted in it. Rail guided system rolls over a T beam which is made up of mild steel with the help of a gear mechanism attached with a side shaft 12V DC geared motor.

To visually monitor the whole process, camera surveillance has been provided using Logitech HD webcam. This camera can be mounted on the robotic arm end effector because of its small size or can be used for surveillance purpose, which will be kept at a distance from the Solar PV panel arrays to look after the whole working. Cleaning of the Solar PV panels can be based on periodic time intervals or depending upon the camera received data.

3.5 MECHANICAL DESIGN OF SPCRA

In the design of the Robotic arm many factors [8, 135, 136] are considered such as weight, assembly and disassembly of parts, workspace, load capacity, speed, repeatability and accuracy, volume, energy, efficiency and cost. Rigid – link manipulators require light, stiff structures to achieve high accuracy and low inertia. Several designs techniques have been studied for designing the manipulator [137, 138]. Analysis of stiffness [139], displacement of manipulators links has been done with the help of solid works. Optimization techniques and calibration techniques have been used to correct errors in accuracy. While designing manipulator arm light weight material with high strength has been chosen

The robotic arm is of four degree - of – freedom, it comprises of two revolute and two prismatic joints. Design of the robotic arm should be focused on its weight. The maximum payload is defined to be 500 g, which is in consideration with the weight of cleaning head mechanism, but it has been tested (in software) for 5 kg. The length of the Robotic arm is 1.4 m (as shown in fig. 3.1 and 3.2). From this 1.4m the actual cleaning dimension is of 0.64 m (as shown in fig. 3.15 , rest is kept as clearance between the robot and the Solar PV array and mounting of ultrasonic

sensor at top of Robotic arm. The robotic arm is connected with the worm geared 12 V DC servo motor placed at the bottom of the link in the base. The advantage of worm gear assembly is:

- Right angle power transmission.
- No need of stall torque, worm gear arrangement will hold the load during no power.

Workspace of SPCRA

÷

Fig. 3.1: Top View of the workspace of SPCRA

Fig 3.2: Side View of the Workspace of SPCRA

Fig 3.3: Cleaning Workspace of the SPCR (One Stroke)

Hence, less power consumption and protection of Solar PV panels from any mishap due to robotic arm. The material of the arm is chosen as aluminum (AI6063; Grade T5) for light weight and high strength.

The chain sprocket assembly from Vex Robotics is made up of reinforced material and can transmit heavy loads up to 22.6 kg over long distances.

To move this chain sprocket assembly side shaft geared DC motor (85 rpm) with bi-directional encoder is fitted. It is having a stall torque of 21kg/cm @ 12V.

The base holds the arm with the help of worm geared 12 V DC servo motor placed at the bottom of the link. It also holds few other parts of the robotic assembly like blower, mini water tank with pump, side shaft DC motor coupled with the guide rail. Because of the other items placed on it, the counterweight tilt while the robotic arm is tilted towards the Solar PV panels. To make the base area small and strengthy, we made it circular and the material is mild steel.

The rail guided platform is made up of mild steel. It carries the whole structure of the robot, which includes arm and base (and its components). Considering the total weight of the robot, strength of material and ease of fabrication we choose mild steel for the rail guided platform. Complete robot is moved with the help of a 12V side shaft DC motor which is coupled with the T beam rail (made up of cast iron) using gear mechanism. The inference we conclude after structural analysis of the above component of the robotic manipulator is that it is the major load bearing component and hence has to be structurally sound and stable. The base of the arm (along

with gear system and other parts) and he arm itself is kept on top of it which exerts a combined load of few Kilo Newton of force. The self-weight of the structure is also considered in the analysis.

The structure is made purely out of mild steel except the arm which is made from Aluminum (Al 6063 T5). The types of load are exerted on this component which are:

- 1) Normal load due to the base and the arm arrangement
- 2) Torque applied via gear arrangement
- 3) Self weight of the component.

Stress, strain and displacement studies were done in SOLIDWORKS [140]. From fig. 3.4 it is apparent that the maximum stress is induced at the junction of the hollow rod and main structure. This is due to the maximum amount of strain occurs at that position. The junction is a welded joint and hence maximum amount of stress is concentrated at this point. The scale besides the fig. 3.4 shows, maximum and minimum stress strain ranges. This analysis gives us a clear idea that we need to release the stress from the specified location. It can be either done by heat treating the component to make bring it to a specified strength or using the same material for welding as the base material to maintain the uniformity in the properties. Hence welding was done using mid steel only.

Fig 3.4: Displacement of Rail Guided System

Fig 3.5: Strain of Rail Guided System

Fig 3.9: Displacement

The above fig. 3.7, 3.8, 3.9, 3.10 show the results produced by the load analysis on the robotic arm of the structure. Fig 3.7, shows the mesh diagram of the robotic arm which sustains the load of the cleaning head, chain and sprocket motion system and the driving motor.

Fig 3.8, shows the Von Misses stress analysis of the robotic arm. The values of the stress range from 696 (minimum) to 6,389,769 (maximum) N/m². The von Mises yield criterion suggests that the yielding of materials begins when the second deviatory stress invariant J_2 reaches a critical value. For this reason, it is sometimes called the J_2 -plasticity or J_2 flow theory. It is part of a plasticity theory that applies best to ductile materials, such as metals. Prior to yield, material response is assumed to be elastic.

Fig 3.9, shows the URES Resultant Displacement analysis of the robotic arm. The values of the displacement range from $1X10^{-30}$ mm (minimum) to $3.654X10^{-1}$ mm (maximum) under the maximum load condition. The load is assumed to be 50 N (~5.1 Kg) which is under the loading factor of safety of >3.

Fig 3.10. show the Static Strain analysis of the robotic arm. The values of the Static Strain the structure range from $7.4X10^{-9}$ (minimum) to $6.9X10^{-5}$ (maximum). A scalar quantity called the equivalent strain, or the von Mises equivalent strain, is often used to describe the state of strain in solids. Several definitions of equivalent strain can be found in the literature. A definition that is commonly used in the literature on plasticity is

$$\varepsilon_{\rm eq} = \sqrt{\frac{2}{3}\varepsilon^{\rm dev}} : \varepsilon^{\rm dev} = \sqrt{\frac{2}{3}\varepsilon^{\rm dev}_{ij}\varepsilon^{\rm dev}_{ij}} \qquad \qquad \varepsilon^{\rm dev} = \varepsilon - \frac{1}{3}{\rm tr}(\varepsilon)$$

This quantity is work conjugate to the equivalent stress defined as

$$\sigma_{
m eq} = \sqrt{rac{3}{2}} {m \sigma}^{
m dev}: {m \sigma}^{
m dev}$$

The above fig. 3.11, 3.12, 3.13, 3.14 show the results produced by the load analysis on the base of the structure. figure 4.12, shows the mesh diagram of the revolving base which sustains the load of the robotic arm, air blower, water tank, and battery.

Figure 3.13, shows the Von Misses stress analysis of the revolving base. The values of the stress range from 0 (minimum) to 69.6 (maximum) N/m². The yield strength is 351,571,008

 N/m^2 . The von Mises yield criterion suggests that the yielding of materials begins when the second deviatory stress invariant J_2 reaches a critical value. For this reason, it is sometimes called the J_2 -plasticity or J_2 flow theory. It is part of a plasticity theory that applies best to ductile materials, such as metals. Prior to yield, material response is assumed to be elastic.

Figure 3.13, shows the URES Resultant Displacement analysis of the revolving base. The values of the displacement range from $1X10^{-30}$ mm (minimum) to $3.364X10^{-10}$ mm (maximum) under the maximum load condition. The load is assumed to be 150 N (~15.3 Kg) which is under the loading factor of safety of >3.

Figure 3.14, show the Static Strain analysis of the revolving base. The values of the Static Strain the structure range from 1.387×10^{-15} (minimum) to 2.386×10^{-10} (maximum). A scalar quantity called the equivalent strain, or the von Mises equivalent strain, is often used to describe the state of strain in solids. Several definitions of equivalent strain can be found in the literature. A definition that is commonly used in the literature on plasticity is

$$arepsilon_{
m eq} = \sqrt{rac{2}{3} oldsymbol{arepsilon}^{
m dev}:oldsymbol{arepsilon}^{
m dev}} = \sqrt{rac{2}{3} arepsilon_{ij}^{
m dev} arepsilon_{ij}^{
m dev}} \qquad oldsymbol{arepsilon}^{
m dev} = oldsymbol{arepsilon} - rac{1}{3} {
m tr}(oldsymbol{arepsilon}) \ \mathbf{1}$$

This quantity is work conjugate to the equivalent stress defined as

$$\sigma_{
m eq} = \sqrt{rac{3}{2}} {m \sigma}^{
m dev}: {m \sigma}^{
m dev}$$

The mechanical properties of the selected material are as follows in table 3.3 and 3.4:

Property	Value	Units
Elastic Modulus	6.61781 X 10 ¹⁰	N/m^2
Shear Modulus	5×10^{10}	N/m^2
Density	7200	Kg/m ³
Tensile Strength	1.51658 X 10 ⁸	N/m^2
Compressive Strength	5.72165 X 10 ⁸	N/m^2

Table 3.3: Mechanical properties of Cast Iron (to check the load bearing capacity)

Property	Value	Units
Elastic Modulus	6.9 X 10 ¹⁰	N/m ²
Shear Modulus	2.58 X 10 ¹⁰	N/m ²
Density	2700	Kg/m ³
Tensile Strength	1.45 X 10 ⁸	N/m ²
Compressive Strength	5.72165 X 10 ⁸	N/m^2

 Table 3.4: Mechanical properties of Aluminium (Arm)-6063-T5 (to check the load bearing capacity)

Considering the array based positioning of SPV panels, following steps are taken in to account:

Fig. 3.15: Fixed type SPV module placing

Fig. 3.16: Rail Guided and SPV module placing

- ♦ Initially SPCRA will come to its home position P0 shown in Fig. 3.16.
- From its home position, it will go to its position P1 which will be determined via the no. of ticks.
- On reaching its first position, guide rail system will stop and arm will start tilting towards the SPV panels.
- Cleaning head starts from the top of the inclined SPV panels to its base, where it stops.
- After cleaning of row1, SPCRA comes out and enters the semi curricular path where it stops in between and rotates 180°. and proceeds further

3.6 COMPONENT SPECIFICATIONS

#	Component	Specification	Description
1.	Robotic arm		• Light weight and
	(aluminium 6063-		high strength

T5)		
Worm geared dc	Operating voltage: 12/24 V	• Right angle power
Motor [141]	No load current:1.5-2.5 A	transmission.
	Load current: 3.5-5 A	• No need of stall
	Nominal power: 50 W	torque, worm gear
	Torque: 56 N-m	arrangement will hold
	Stall torque: 29 N-m	• The load during no
	No load speed: 45 rpm	power)
	Load speed: 40 rpm	
	Weight: 2 kg	
Side shaft bi	Operating voltage: 12 V	• Bi directional
directional encoded	Stall current: 1.8 A	encoder for the cleaning
motor [142]	Nominal power: 50 W	head motion, up and
	No load speed: 85 rpm	down.
	Load speed: 85 rpm	• PWM based speed
	Weight: 320 g	control
Motor driver [143]	Operating voltage: 6-16 V	• As per battery
	Continuous o/p current: 8A	rating and spcra current
	Peak current: 30 A	consumption.
	Current sense: 0.13 V/A.	• Over voltage and
	Dimension: 51.3 x 27.7	under voltage shutdown
	mm ²	• Thermal shutdown
		• Motor fault
		diagnostics outputs for
		over temperature or short
		circuit
High Strength		Reinforced sprockets and
sprocket & chain kit		chain can transmit higher
[144]		loads over long distances.

			Length has been chosen		
			as per arm length.		
2.	Rail guided system (mild steel)				
	Side shaft dc motor	Operating voltage: 12/24 V	High torque		
		Stall current: 1.8 A			
		Nominal power: 50 W			
		No load speed: 85 rpm			
		Weight: 320 g			
3.	End effector				
	Wiper	Material: Rubber	• Flat aerodynamic		
		Width: 614 mm	blade.		
			• Ensures even		
			pressure to Reduce		
			smears		
4.	Controller	1			
	ATMEGA 16		• Speed control by		
			pwm (ocr pins)		
			• 16 kb of flash		
			memory for storing code.		
			• 1 kb of sram for		
			permanent storage		
			• Data retention rate		
			of 20 yrs. (85° C)		
			• 10 bit ADC		
			• Write / Erase		
			cycles: 10k flash		
	Proximity Switch	Type: DC 3 wire type	• To detect the		
		Switch appearance type:	upward and downward		
		Cylinder type	edge of SPV panels.		
			Detecting distance is		

Theory: Induction Sensor	taken low, so that the
	cleaning head reached till
Output type: NPN NC	
(normal closed)	• Water and
Detecting Distance: 1.5 mm	moisture protection.
	• Over-current and
Work Voltage: dc 10-35 V	short Circuit protection,
Consumption Current: max 200 mA	with led Indicate, easily identifiable.

CHAPTER 4

EXPERIMENT DESIGN

4.1 TRAJECTORY PLANNING

An industrial robot is a specific application based machine for industrial automation. As per the requirement, robots are precisely formulated to perform the desired performance and functionality. The required motion control performance depends on the application. For better performance and application subjected to automation by a specific robot model. Some requirement examples are:

- i. High path accuracy for continuous application.
- ii. Small overshoots and a short settling time in discrete process applications.
- iii. High control stiffness in contact applications, etc.

4.1.1 PATH VERSUS TRAJECTORY

A path is defined as the collection of a sequence of configurations a robot makes to go from one place to another without regard to the timing of these configurations while a trajectory is related to the timing at which each part of the path must be attained [134]. Also depending on how fast each portion of the path is traversed, the trajectory may differ.

4.1.2 JOINT SPACE TRAJECTORY PLANNING

In due course of moving a robotic arm from point A to B, there would be several ways to achieve so, but we have to choose the trajectory which suites the following criteria:

- i. Slow start and stop of the robotic arm, which will help in minimizing the damping by virtue of inertia.
- ii. At the beginning of the path traversing the robotic arm has to accelerate and before reaching the destination point it should decelerate.
- iii. Follow the boundary conditions:

$$\theta(t_i) = 90^\circ; \qquad \dot{\theta}(t_i) = \frac{0^\circ}{sec}; \qquad \theta(t_i) = \frac{0^\circ}{sec^2}$$
$$\theta(t_f) = 30^\circ; \qquad \dot{\theta}(t_f) = \frac{0^\circ}{sec}; \qquad \ddot{\theta}(t_f) = \frac{0^\circ}{sec^2}$$

Where $t_i = 0$ sec (initial time) and $t_f = 2.75$ sec (final time) are boundary conditions. $\theta, \dot{\theta}$ and $\ddot{\theta}$ are the angular position, velocity and acceleration.

iv. As the actual path is a smaller one, hence blending required is as follows, as shown in Fig. 4.1:

$$\begin{aligned} \theta & (t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 \\ \dot{\theta}(t) &= c_1 + 2c_2 t + 3c_3 t^2 \\ \ddot{\theta}(t) &= 2c_2 + 6c_3 t \\ \text{where, } c_0 &= 90; c_1 = 0; c_2 = -23.8119; c_3 = 5.7741 \end{aligned}$$

Table 4.1: Actual	and	Simulated	torque
-------------------	-----	-----------	--------

Sl. No.	Simulated Torque (Nm) (Via Simulation)	Actual Torque (Nm)
1.	18.256	15.032

4.2 DYNAMICS OF SPCRA

The chapter describes the mathematical modeling for obtaining the dynamics of SPCRA. To accelerate a robot's links, it is necessary to have actuators capable of exerting large enough forces and torques on the links and joints to move them as desired velocity and acceleration. Otherwise, the links may not be moving as fast as desired and consequently, the robot may not maintain the desired positional accuracy. To calculate how strong each actuator must be, it is necessary to determine the dynamic relationships that govern the motions of the robot. These relationships are the force –mass –acceleration and the torque –inertia –angular –acceleration equations. Based on these equations, and considering the external loads on the robot, the designer can calculate the largest loads to which the actuators may be subjected, thereby designing the actuators to be able to deliver the necessary forces and torques.

In general, the dynamic equations may be used to find the equations of motion of mechanisms ie. by knowing the forces and torques, we can predict how a mechanism will move. We will use these equations to find what forces and torques may be needed to induce desired acceleration in the robot's joints and links.

In general, techniques such as Newtonian mechanics can be used to find the dynamic equations for robots. However, due to the fact that robots are 3-D and multi –DOF mechanisms with distributed masses, it is very difficult to use Newtonian mechanics. Instead, we may opt to use other techniques such as Lagrangian mechanics, which is based on energy terms only, and therefore, in many cases, easier to use. Lagrangian mechanics is based on the differentiation of the energy terms with respect to the system's variables and time. Lagrangian mechanics is based on the following two generalized equations: one for linear motions and one for rotational motions.

For mathematical modeling of SPCRA, we have to individually model its sub parts as:

- i. The arm-wiper system (as shown in fig. 4.2)
- ii. Heading / Yaw motion (as shown in fig. 4.2)
- iii. Transitional motion about the rails. (as shown in fig. 4.3)

Fig. 4.2: Schematic diagram of Arm-wiper system and Heading/ Yaw motion

Fig. 4.3: Transitional motion about the rails

A. The arm-wiper system

- i. Two Degrees of freedom: Θ, Ψ
 - $m_{1:}$ Mass of Arm.
 - r₁: Constant distance, where the center of mass of the arm can be said to be concentrated.
 - m_{2:} Mass of wiper system.

- r: Distance of the wiper system from the center of rotation
- ii. Inputs to the system:
 - > T_{Θ} : Torque applied at the hub in the direction of ' Θ '. (as shown in fig. 4.18)
 - > F_r : Translational force applied in the direction of 'r'. (as shown in fig. 4.18)

Fig. 4.4: Torque and transitional force

- i. Lagrangian Equations of motion for the system:
 - Total Kinetic energy of the system Position of mass *m*₁:

 $x_{1} = r_{1} \cos \theta$ $y_{1} = r_{1} \sin \theta$ $\dot{x}_{1} = -r_{1} \dot{\theta} \sin \theta$ $\dot{y}_{1} = r_{1} \dot{\theta} \cos \theta$

Magnitude squared of the velocity vector of mass m1:

$$v_1^2 = \dot{x}_1^2 + \dot{y}_1^2 = r_1^2 \dot{\theta}^2 \sin^2 \theta + r_1^2 \dot{\theta}^2 \cos^2 \theta$$
$$v_1^2 = r_1^2 \dot{\theta}^2$$

Kinetic Energy of mass m1 is:

$$k_1 = \frac{1}{2}m_1v_1^2$$
$$k_1 = \frac{1}{2}m_1r_1^2\dot{\theta}^2$$

Position of mass m_2 :

 $x_{2} = r \cos \theta$ $y_{2} = r \sin \theta$ $x_{2} = \dot{r} \cos \theta - r \dot{\theta} \sin \theta$ $\dot{y_{2}} = \dot{r} \sin \theta + r \dot{\theta} \cos \theta$

Magnitude squared of the velocity vector of mass m1:

$$v_2^2 = \dot{x}_2^2 + \dot{y}_2^2 = (\dot{r}\cos\theta - r\,\dot{\theta}\sin\theta\,)^2 + (\dot{r}\sin\theta + r\dot{\theta}\cos\theta)^2\,\,v_2^2 = \dot{r}^2 + r^2\dot{\theta}^2$$

Kinetic Energy of mass m_2 is:

$$k_2 = \frac{1}{2}m_2v_2^2$$

$$k_2 = \frac{1}{2}m_2\dot{r^2} + \frac{1}{2}m_2r^2\dot{\theta}^2$$
total kinetic energy of the system:
$$k = k_1 + k_2$$

 $k = \frac{1}{2}m_1r_1^2\dot{\theta}^2 + \frac{1}{2}m_2\dot{r}^2 + \frac{1}{2}m_2r^2\dot{\theta}^2$

• Total Potential Energy of the system: For mass m_1 :

 $u_1 = m_1 g r_1 \sin \theta$

For mass m_2 :

Hence,

$$u_2 = m_2 gr \sin \theta$$

Total Potential Energy:

$$u = u_1 + u_2 = m_1 g r_1 \sin \theta + m_2 g r \sin \theta$$

• The Lagrangian function for the system considering distributed mass of the robotic arm:

$$l = (k - u) + \frac{I_{c1}\dot{\theta}^{2}}{2}$$
$$l = \frac{1}{2}m_{1}r_{1}^{2}\dot{\theta}^{2} + \frac{1}{2}m_{2}\dot{r}^{2} + \frac{1}{2}m_{2}r^{2}\dot{\theta}^{2} - m_{1}gr_{1}\sin\theta - m_{2}gr \sin\theta + \frac{I_{c1}\theta^{2}}{2}$$

Where,
$$\frac{d}{dt} \left(\frac{\partial l}{\partial \dot{\theta}} \right) - \left(\frac{\partial l}{\partial \theta} \right) + \left(\frac{\partial q}{\partial \theta} \right) = 0$$

 $q = \frac{C_1}{2} \theta_1^{2}$; q is Rayleigh Damping
 $\frac{\partial q}{\partial \dot{\theta_1}} = C_1 \dot{\theta_1}$ and
 $I_{C1} = \frac{ml^2}{12}$

• The system has two degrees of freedom. Hence, we have two Lagrangian equations of motion for this system:

Solving for equation no. (a). $\frac{\partial l}{\partial \theta} = m_1 r_1^2 \dot{\theta} + m_2 r^2 \dot{\theta}$ $\frac{\partial l}{\partial \theta} = -(m_1 g r_1 \cos \theta + m_2 g r \cos \theta)$

Hence, the first Lagrangian equation yields: $T_{\theta} = m_1 r_1^2 \ddot{\theta} + m_2 r^2 \ddot{\theta} + 2m_2 r \dot{r} \dot{\theta} - g \cos \theta (m_1 r_1 + m_2 r) + I_{C1} \ddot{\theta}$

Solving for equation no. (b).

$$\begin{aligned} \frac{\partial l}{\partial \dot{r}} &= m_2 \dot{r} \\ \frac{d}{dt} \left(\frac{\partial l}{\partial \dot{r}} \right) &= m_2 \ddot{r} \\ \frac{\partial l}{\partial r} &= m_2 r \dot{\theta}^2 - m_2 g \sin \theta \end{aligned}$$

Hence, the second Lagrange equation yields:

$$F_r = m_2 \ddot{r} - m_2 r \dot{\theta}^2 + m_2 g \sin \theta^*$$

In state space form :

Let
$$x_1 = \theta$$
, $x_2 = \dot{\theta}$, $x_3 = r$, $x_4 = \dot{r}$
Then,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ -2m_2 x_2 x_3 x_4 + g \cos x_1(m_1 r_1 + m_2 x_3) + u_1 \\ m_1 r_1^2 + m_2 x_3^2 + l_{c_1} \\ x_4 \\ x_2^2 x_3 - g \sin x_1 + \frac{u_2}{m_2} \end{bmatrix}$$

Where $u_1 = T_{\theta}$ and $u_2 = F_r$

(*Calculation including Wind forces etc. has been shown in Annexure I)

Fig. 4.5: Forces acting on SPCRA

- Effect of Robotic arm on the circular base, when the Robotic arm is in use. Two types of forces acting on the circular base (as shown in fig. 4.5),
- i. Weight of the robotic arm 'w'
- ii. Reaction force applied by the robotic arm on the circular surface F_r

$$F_x = F_r \cos \theta$$

$$F_y = F_r \sin \theta + w$$

$$M_{xy} = F_r \sin \theta x_1 + F_r \cos \theta y_1 + w x_2$$

Where x_1 and y_1 are the distance of the perpendicular arm from the end effector. x_2 and y_2 are the distance of the perpendicular arm's centre of gravity point.

• Analysis of Circular base (considering robotic arm)

$$M_c = M_{xy} + F_y r_2$$

From figure 4.6, it is clear that the robotic arm is tending towards stability in due course of time as the vibration of the arm is diminishing. Although its effect has been damped as the wiper is made up of vulcanized rubber, hence there will be no practical adverse effect on SPV panel.

Fig. 4.6: Time series analysis of SPCRA

From figure 4.7, it is clear that the phase plot is concentrated in a particular region which implies that the arm is stable in a particular which is also validating figure 4.6.

4.3 BLOCK DIAGRAM

Fig. 4.8: Block diagram of SPCRA

In figure 4.8, control circuit of SPCRA using microcontroller is been described and the same has been shown in figure 4.9 with proper pin connections with Atmega 16. As the system can be controlled by using any microcontroller having few basic requirements like pulse width modulation (PWM), Analog to Digital converter ports, interrupts etc. PWM is required for proper speed control. ADC port is required for reading the battery voltage level and reading the path clearance using ultrasonic sensors. Interrupts are required for counting encoder values of motor for accurate positioning. Motors are driven using motor driver IC's, using control pulse from the microcontroller.

4.4 CIRCUIT DIAGRAM

Fig. 4.9: Circuit Diagram of SPCRA

4.5 ALGORITHM

Few algorithms have been followed for the working of SPCRA:

➢ Main Loop

i.

- Status Check Loops
 - a. Path Clearance
 - b. Water Level
 - c. Battery Charge
- ii. Rail Guide Algorithm
- iii. Arm Down Algorithm
- iv. End Effector Cleaning Algorithm
- v. Arm Up Algorithm

4.5.2 Path Clearance Algorithm

Fig. 4.11: Path Clearance Algorithm

Fig. 4.12: Water Level Algorithm

Fig. 4.13: Battery Status Algorithm

4.5.6 Arm Down Algorithm

\

CHAPTER 5

RESULTS

The PV system has an installed capacity of 100 kW_p, which consists of two modules covering a total area of 0.790 m². It was installed on a flat concrete base in ground in University of Petroleum and Energy Studies. The SPV modules were thin film silicon wafers with anti-reflective coatings to maximize sunlight absorption. The modules were installed at an angle of 29.8°C ($\approx 30^{\circ}$ C).

One of the SPV was left un cleaned (periodically) throughout the monitoring period and the other was been cleaned every time before taking the readings, this was been done to mimic and compare the actual scenario. As the comparison is based on the efficiency enhancement and Short circuit current difference, hence one of the SPV modules was kept uncleaned and the other cleaned. During this process both the SPV modules were kept in similar conditions like solar radiation, surface temperature etc.

PV module/ array	Specification
Туре	Thin Film Solar Module (Double junction a-Si)
Application Class	Class A
Nominal P _m	50 W
Maximum System Voltage (V _{sm})	1000 V
Open circuit voltage (V _{oc})	62 V
Short circuit current (I_{sc})	1.42 A
Dimension	1245 X 635 X7.5 mm

 Table 5.1: SPV Specifications

5.1 PV SYSTEM TERMINOLOGIES

Power is the rate at which energy is used or generated and is measured in Joules per second (Watts). Electrical energy is watts multiplied by time and it is measured in Watt-hr. Table 5.2 shows the principal parameters of solar cells.

Parameter	Formula	Unit	Description
	Sign		
MPP Power	P _{MPP}	W _p	Maximum power under STC (nominal power)
Fill Factor	FF	-	Quality yardstick for Solar Cells, generally between
			0.5 and 0.85
Efficiency	Н	%	Ratio of the power delivered by the cell and the solar
			irradiance
MPP Voltage	V_{MPP}	V	PV voltage at MPP (nominal voltage)
Open –	V _{oc}	V	Open circuit voltage, generally specified for STC:
circuit			Voltage that the solar cell supplies when both
voltage			terminals are directly connected
MPP Current	I _{MPP}	А	PV Current, generally specified for STC.
Short- circuit	I _{sc}	А	Short-circuit current, generally specified for STC:
current			current that the solar cell supplies when both terminals
			are directly connected.

Table 5.2: Principal parameters of Solar Cells [145]

5.2 MONITORING RESULTS

Monitoring of the test rig, data collection, performance analysis and reporting were shown below. Data was collected for a period of four weeks from morning 1000 hrs to evening 1700 hrs over an interval of 30 minutes. Data was been monitored for the both the SPV modules (cleaned and uncleaned), and following observations are made:

- i. Short Circuit Current (I_{SC}) : Drop in Short circuit current (I_{sc}) due to soiling, as shown in figure 5.1.
- ii. Energy Yield: The effective loss in terms of power has been shown in Table 5.3. The power difference is being increased, as the days are increasing for consecutive weeks, which is been clear from the trends of fig.5.1 also it shows an increasing behavior in terms of power loss.

iii. SPV Module Temperature: Day wise variation of SPV module surface temperature and Short circuit current I_{SC}

DAYS	Week1	Week2	Week3	Week4
1	-17.3567	20.0256	3.4166	-28.6655
2	-5.95497	14.23332	0.23062	49.50207
3	-3.97074	4.05834	12.62366	4.67615
4	29.37738	25.29583	8.8253	25.08953
5	20.15533	12.37975	14.78451	24.89871
6	27.76095	17.34945	21.72536	51.53253

 Table 5.3: Weekly power loss (in Watts) due to natural soiling depending on ambient conditions

Fig 5.1: Weekly power loss due to natural soiling under ambient conditions

5.2.1 POWER CONSUMPTION BY SPCRA

Current Ratings in Different conditions				
Part Of SPCRA	No Load	With Load		
	0.19 A - 0.24 A	0.34 A - 0.43 A		

Table 5.4: Current consumption of SPCRA parts in different conditions

Arm : Worm Geared DC motor		
Position of Cleaning Head	Going down towards Solar Panel	Going away from the Solar panel
Far	0.49 A - 0.58A	0.58 A - 0.72 A
Middle	0.49 A - 0.65 A	0.59 A - 0.70 A
Near	0.54 A - 0.58 A	0.58 A - 0.67 A
Base : Rotating Motor		
Left to Right/ Right to Left	0.39 A - 0.43 A	

For entire one time cleaning operation (which includes moving along the guide rail, rotary motion of the arm, up and down cleaning head motion, rotation in guide rail) for a single SPV module.

Table	5.5:	Energy	Consumption	by SPCRA	

Action	Avg. Current	No. of	Total time	Energy consumed
	(A)	cycles	consumed (sec)	(mAhr)
SPCRA platform	0.385	3	18	5.775
motion on guide				
rail				
ARM motion	0.65	6	8.25	8.9375
(rotatory)				
Base platform	0.41	1	6	0.6833
rotation				
Cleaning head	0.39	12	24	31.2
Total	•	•	•	46.5958
From the above table, the power consumption for cleaning a single SPV is **35.708** W using SPCRA.

Considering the peak sunshine condition at 1100 hrs on 14th Nov, 2014, Voc, Isc values for both the panels were taken and compared.

Voc₁ = 54.06 V, Isc₁ = 1.147 A, and P₁= 62.00682 W Voc₂ = 54.03 V, Isc₁ = 1.042 A and P₂= 56.29926 W Amount of power loss due to natural soiling for a particular instant of a day = 8.95661 W Considering the above value for a week= 63 W Amount of Energy Saving for a single SPV module = 63 - 35.708 = 27.292 W % Enhancement in Efficiency = 9.1%

5.3 PERFORMANCE COMPARISON (WITH OTHER PRODUCTS AVAILABLE IN THE MARKET)

Table 5.6: performance comparison (with other products available in the market)

		Gek ko Sola	Gekko Solar Farm[National Instrumen ts	PV Clean er	Solarbr ush [30]	Washpa nel [28]	SPCRA (Propos ed)
		r	25]	Prototype[Robot			
		[24]		26]	V1.0			
Cleaning	Performan	400	2900;		60	60		46.8
	ce Area		2000;					
	$(\mathbf{m}^2/\mathbf{hr})$		1500					
	Max.	7.8	7.8	16.66		1	7	19.38
	Speed							
	(m/min)							
Dimensi	Length X	1175	2276 X					
ons	Width X	Х	(6800;					
	Height	1383	4900;					
	(mm^3)	Х	3800)					
		657	X 820					
	Weight	68	220;	3500	40	2.5	10	17
	(kg)		210;					
			200					
Operatio	Water	0.5-	3.5;			NA		

nal	Consumpt	1.5	3;2.5			
Parmeter	ion	l∕min				
S						
	Nominal	0.8	1.5;	0.5		0.03570
	Power		1.35;			8
	(kW)N		1.2			
	Air	180	180	0.666	NA	
	Consumpt					
	ion					
	(l/min)					
	Pressure	50 lt.			NA	NA
	Tank					
Usage	Max. gap	250	600	80	20	Any
Range	width					Gap
	(mm)					
	Max.	40	50			1400
	Obstacle					
	height					
	(mm)					
	Max.	45	30	45	35	90
	panel					
	inclinatio					
	n (deg)					

Actual Structure

Fig. 5.2: Actual Structure of SPCRA

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSIONS

- 1. The efficiency enhancement of SPV panels can be increased more than 9.1%.
- Efficiency enhancement by cleaning using SPCRA depends on the area coverage, which also depends per unit area ie. for SPV panel's of 500 W and 50 W (of same dimension and under same condition), efficiency enhancement in 500 W SPV panel would be more than 50 W SPV panel.
- 3. Dust and dirt remains a problem, especially in desert areas, where solar energy potential is in abundance. Few reasons for it are:
 - Lack of natural cleaning by rain and shortage of indigenous water resources.
 - Sandy storms and dry climate
- 4. Dust and dirt degrades the energy output of SPV module by: Reduction in solar intensity in the range of 20% to 50% or more.
- 5. Reduction in output power of SPV system in the range of 15% to 30% for moderate dust condition.
- 6. Frequency of cleaning is an important factor for efficiency enhancement and it varies from place to place.
- 7. It is recommended that electromechanical cleaning solution should be implemented in the small/ medium utilities where the power generation through SPV is upto 100 kW,
- 8. Whereas hybrid system (coating+ Electromechanical) should be implemented in the larger utilities where the power production is more than 1 MW.

6.2 FUTURE SCOPE

- In the current research, robot is traversing along a guided platform, which can be further modified so that the guide rail can be removed and on the basis of line following mechanism using sensor networks can be implemented.
- 2. In the current SPV cleaning robotic arm, arm is of fixed length, which can further be modified to a telescopic arm.
- 3. In the current SPV cleaning robotic arm, arm is of single link which can further be modified to two link for better outreach performance in terms of cleaning and area coverage.
- 4. In the current research cleaning is done on periodical/ manual inspection basis, which can be further modified in the following ways:
 - a. Applying image processing based algorithm to detect the dust deposition/ partial shading conditions.
 - b. Using open circuit voltage and short circuit current of SPV module to find the drop in output.

CHAPTER 7 REFERNCES

- 1. van der Hoeven, M., *World Energy Outlook 2011.* 2011.
- 2. Ibrahim, A., *Effect of shadow and dust on the performance of silicon solar cell*. Journal of Basic and Applied Sciences Research, 2011. **1**(3): p. 222-230.
- 3. Wengenmayr, R. and T. Bührke, *Renewable energy: Sustainable energy concepts for the future*2011: John Wiley & Sons.
- 4. Bradford, T., *Solar revolution: the economic transformation of the global energy industry*. MIT Press Books, 2006. **1**.
- 5. Randolph, J. and G.M. Masters, *Energy for sustainability: technology, planning, policy* 2008: Island Press.
- 6. Codes, N.D., *NREL 2012*.
- 7. Habib, G., Stability and bifurcation analysis of mechanical systems subject to digital position *control*, 2013, Budapest University of Technology and Economics.
- 8. Razykov, T., et al., *Solar photovoltaic electricity: Current status and future prospects.* Solar Energy, 2011. **85**(8): p. 1580-1608.
- 9. Lund, P., *Exploring past energy changes and their implications for the pace of penetration of new energy technologies.* Energy, 2010. **35**(2): p. 647-656.
- 10. Krauter, S., *Increased electrical yield via water flow over the front of photovoltaic panels*. Solar energy materials and solar cells, 2004. **82**(1): p. 131-137.
- 11. Odeh, S. and M. Behnia, *Improving photovoltaic module efficiency using water cooling*. Heat Transfer Engineering, 2009. **30**(6): p. 499-505.
- 12. Akbarzadeh, A. and T. Wadowski, *Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation*. Applied Thermal Engineering, 1996. **16**(1): p. 81-87.
- 13. Sharma, V. and S. Chandel, *Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review.* Renewable and Sustainable Energy Reviews, 2013. **27**: p. 753-767.
- 14. Kaldellis, J. and M. Kapsali, *Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements.* Energy, 2011. **36**(8): p. 5154-5161.
- 15. Chen, C.-C., et al., *Programmable energy source emulator for photovoltaic panels considering partial shadow effect.* Energy, 2013. **54**: p. 174-183.
- 16. Sera, D. and Y. Baghzouz. On the impact of partial shading on PV output power. in WSEAS/IASME International Conference on Renewable Energy Sources (RES'08). 2008.
- 17. Tan, C.M., B.K.E. Chen, and K.P. Toh, *Humidity study of a-Si PV cell*. Microelectronics Reliability, 2010. **50**(9): p. 1871-1874.
- 18. Smith, K. and D. Goossens, *Wind tunnel simulations of aeolian dust deposition on thermic solar collectors.* Applied solar energy, 1995. **31**(4): p. 75-89.
- 19. Goossens, D., Z.Y. Offer, and A. Zangvil, *Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors.* Solar Energy, 1993. **50**(1): p. 75-84.
- 20. El-Shobokshy, M.S. and F.M. Hussein, *Effect of dust with different physical properties on the performance of photovoltaic cells.* Solar Energy, 1993. **51**(6): p. 505-511.
- 21. El-Sebaii, A., et al., *Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia.* Applied Energy, 2010. **87**(2): p. 568-576.
- 22. Demain, C., M. Journée, and C. Bertrand, *Evaluation of different models to estimate the global solar radiation on inclined surfaces.* Renewable Energy, 2013. **50**: p. 710-721.

- 23. Heliotex. Automatic Solar Panel Cleaning Systems. 2013 [cited 2014 16 November].
- 24. Solar, G. [cited 2014 16 November]; Available from: http://serbot.ch/images/documents/TD_GEKKO%20Solar_En_2013_06_06.pdf.
- 25. Farm, G.S. [cited 2014 16, November]; Available from: http://serbot.ch/images/documents/TD_GEKKO%20Solar%20Farm_En_2013_06_26.pdf.
- 26. Studies, N.I.C. Designing and Prototyping an Autonomous Robot to Automatically Clean Solar Panels [cited 2014 16, November]; Available from: <u>http://sine.ni.com/cs/app/doc/p/id/cs-13448</u>.
- 27. Fab, T. Advanced Polymer Coating. [cited 2014 16, November]; Available from: http://www.tufffab.com/solar-panel-glass-coating-solution.html.
- 28. Robot, S.P.a.c. [cited 2014 16, November]; Available from: http://www.washpanel.com/en/documenti.php.
- 29. ANDERSON, M., et al., *ROBOTIC DEVICE FOR CLEANING PHOTOVOLTAIC PANEL ARRAYS*.
- 30. Brush, S. *Cleaner Solar Energy*. [cited 2014 16, November]; Available from: <u>http://www.solarbrush.de/about</u>.
- 31. *Cleaning Robot System for Heliostats*. [cited 2014 16, November]; Available from: <u>http://www.sener-aerospace.com/AEROESPACIAL/ProjectsD/hector-cleaning-robot-system-for-heliostats/en</u>.
- 32. GB1. [cited 2013 August]; Available from: <u>http://www.greenbotics.com/</u>.
- 33. Mazumder, M.K., R.A. Sims, and J.D. Wilson, *Transparent self-cleaning dust shield*, 2005, Google Patents.
- 34. Sims, R., et al. Development of a transparent self-cleaning dust shield for solar panels. in *Proceedings ESA-IEEE joint meeting on electrostatics*. 2003.
- 35. Hanafin, M.C., *Solar panel cover assembly*, 1982, Google Patents.
- 36. Shimizu, T., et al., *Generation control circuit for photovoltaic modules*. Power Electronics, IEEE Transactions on, 2001. **16**(3): p. 293-300.
- 37. Bock, J.P., et al. An efficient power management approach for self-cleaning solar panels with integrated electrodynamic screens. in Proc. ESA Annual Meeting on Electrostatics. 2008.
- 38. Melcher, J.R., E.P. Warren, and R.H. Kotwal, *Traveling-wave delivery of single-component developer*. Industry Applications, IEEE Transactions on, 1989. **25**(5): p. 956-961.
- 39. Atten, P., H.L. Pang, and J.-L. Reboud, *Study of dust removal by standing-wave electric curtain for application to solar cells on mars.* Industry Applications, IEEE Transactions on, 2009. **45**(1): p. 75-86.
- 40. Masuda, S. and Y. Matsumoto. *Contact-type electric curtain for electrodynamical control of charged dust particles*. in *Proc. 2nd Int. Conf. on Static Electricity, Frankfurt*. 1973.
- 41. News, M. [cited 2004 June]; Available from: <u>www.marsnews.com</u>.
- 42. Watanabe, K., et al. Self-assembled SiO<inf>2</inf> particle coating on 2 layer anti-reflection films for efficiency enhancement of GaAs PV cells. in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE. 2010.
- 43. Green, M.A., *Two new efficient crystalline silicon light-trapping textures.* Progress in Photovoltaics: Research and Applications, 1999. **7**(4): p. 317-320.
- 44. Sai, H., et al., *Wide-angle antireflection effect of subwavelength structures for solar cells.* Japanese journal of applied physics, 2007. **46**(6R): p. 3333.
- 45. Ji, L. and V.V. Varadan, *Fishnet metastructure for efficiency enhancement of a thin film solar cell.* Journal of applied physics, 2011. **110**(4): p. 043114.
- 46. Pillai, S., et al., *Surface plasmon enhanced silicon solar cells*. Journal of applied physics, 2007. **101**(9): p. 093105.

- 47. Dorobantu, L., et al. The effect of surface impurities on photovoltaic panels. in proceeding the international conference on renewable energies and power quality, Las Palmas de Gran Canaria, Spain, (13th–15th April 2011). 2011.
- 48. Patel, H. and V. Agarwal, *MATLAB-based modeling to study the effects of partial shading on PV array characteristics*. Energy Conversion, IEEE Transactions on, 2008. **23**(1): p. 302-310.
- 49. Kadri, R., et al., *Modeling of the photovoltaic cell circuit parameters for optimum connection model and real-time emulator with partial shadow conditions*. Energy, 2012. **42**(1): p. 57-67.
- 50. Prudhvi, P. and P. Chaitanya Sai. *Efficiency improvement of solar PV panels using active cooling*. in *Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on*. 2012. IEEE.
- 51. Krauter, S. Thermal and optical enhanced PV-modules. in Proceedings of the 13th European Photovoltaic Solar Energy Conference. 1995.
- 52. Krauter, S., R. Hanitsch, and L. Moreira. *New optical and thermal enhanced PV-modules performing 12% better under true module rating conditions*. in *Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE*. 1996. IEEE.
- 53. Bahaidarah, H., et al., *Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions*. Energy, 2013. **59**(0): p. 445-453.
- 54. Kordzadeh, A., *The effects of nominal power of array and system head on the operation of photovoltaic water pumping set with array surface covered by a film of water.* Renewable Energy, 2010. **35**(5): p. 1098-1102.
- 55. Rosa-Clot, M., et al., *Submerged photovoltaic solar panel: SP2*. Renewable Energy, 2010. **35**(8): p. 1862-1865.
- 56. Furushima, K. and Y. Nawata, *Performance evaluation of photovoltaic power-generation system equipped with a cooling device utilizing siphonage.* Journal of solar energy engineering, 2006. **128**(2): p. 146-151.
- 57. Mazumder, M., et al., *Characterization of electrodynamic screen performance for dust removal from solar panels and solar hydrogen generators.* Industry Applications, IEEE Transactions on, 2013. **49**(4): p. 1793-1800.
- 58. Horenstein, M.N., et al., *Modeling of trajectories in an electrodynamic screen for obtaining maximum particle removal efficiency*. Industry Applications, IEEE Transactions on, 2013. **49**(2): p. 707-713.
- 59. Hottel, H. and B. Woertz, *Performance of flat-plate solar-heat collectors.* Trans. ASME (Am. Soc. Mech. Eng.);(United States), 1942. **64**.
- 60. Dietz, A.G., *Diathermanous materials and properties of surfaces.* Space Heating with Solar Energy, 1963.
- 61. Garg, H., *Effect of dirt on transparent covers in flat-plate solar energy collectors.* Solar Energy, 1974. **15**(4): p. 299-302.
- 62. Sayigh, A. *Effect of dust on flat plate collectors*. in *Sun: mankind's future source of energy*. 1978.
- 63. Anagnostou, E. and A. Forestieri. *Endurance testing of first generation (Block I) commercial solar cell modules*. in *Proceedings of the 13th IEEE PV Specialists Conference*. 1978.
- 64. Hoffman, A. and R. Ross. *Environmental qualification testing of terrestrial solar cell modules*. in *13th IEEE PVSC*. 1978.
- 65. Pettit, R., J. Freese, and D. Arvizu, *Specular reflectance loss of solar mirrors due to dust accumulation*, 1978, Sandia Labs., Albuquerque, NM (USA).
- 66. Blackmon, J. and M. Curcija. *Heliostat reflectivity variations due to dust buildup under desert conditions*. in *Seminar on Testing Solar Energy Materials and Systems*. 1978.
- 67. Berg, R.S., *Heliostat dust buildup and cleaning studies.* NASA STI/Recon Technical Report N, 1978. **79**: p. 11495.

- 68. Freese, J. *Effects of outdoor exposure on the solar reflectance properties of silvered glass mirrors*. in *Sun II*. 1979.
- 69. Murphy, E.B. and S.E. Forman. *Measuring dirt on photovoltaic modules*. in *In: The enigma of the eighties: Environment, economics, energy; Proceedings of the Twenty-fourth National Symposium and Exhibition, San Francisco, Calif., May 8-10, 1979. Book 1.(A79-43228 18-23) Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1979, p. 717-727. Research sponsored by the US Department of Energy.* 1979.
- 70. Forman, S. *Photovoltaic module performance and degradation at various MIT/LL test sites*. in *Sun II*. 1979.
- 71. Nimmo, B. and S.A. Said. *Effects of dust on the performance of thermal and photovoltaic flat plate collectors in Saudi Arabia-Preliminary results*. in *Alternative energy sources II, Volume 1*. 1981.
- 72. Hoffman, A. and C. Maag. Airborne particulate soiling of terrestrial photovoltaic modules and cover materials. in In: Life cycle problems and environmental technology; Proceedings of the Twenty-sixth Annual Technical Meeting, Philadelphia, PA, May 12-14, 1980.(A81-46476 22-38) Mt. Prospect, IL, Institute of Environmental Sciences, 1980, p. 229-236. 1980.
- 73. Roth, E. and R. Pettit, *The effect of soiling on solar mirrors and techniques used to maintain high reflectivity.* Solar materials science, 1980. **1**: p. 199-227.
- 74. Cuddihy, E.F., *Theoretical considerations of soil retention*. Solar energy materials, 1980. **3**(1): p. 21-33.
- 75. Pettit, R. and J. Freese, *Wavelength dependent scattering caused by dust accumulation on solar mirrors.* Solar energy materials, 1980. **3**(1): p. 1-20.
- 76. Zakhidov, R. and A. Ismanzhanov, *Investigation of abrasive action of atmospheric particles on the reflectance of mirrors.* Applied solar energy, 1980. **16**: p. 39-43.
- 77. Wakim, F., *Introduction of PV power generation to Kuwait*. Kuwait Institute for Scientific Researchers, Kuwait City, 1981.
- 78. Bethea, R., E. Collier, and J. Reichert, *Dust storm simulation for accelerated life testing of solar collector mirrors.* Journal of solar energy engineering, 1983. **105**(3): p. 329-335.
- 79. Sayigh, A., S. Al-Jandal, and H. Ahmed. *Dust effect on solar flat surfaces devices in Kuwait*. in *Proceedings of the workshop on the physics of non-conventional energy sources and materials science for energy*. 1985.
- El-Shobokshy, M., A. Mujahid, and A. Zakzouk, *Effects of dust on the performance of concentrator photovoltaic cells.* IEE Proceedings I (Solid-State and Electron Devices), 1985.
 132(1): p. 5-8.
- 81. Zakzouk, A. and M. Electrochem, *On the dust-equivalent series resistance of a photovoltaic concentrator.* IEE Proceedings I (Solid-State and Electron Devices), 1984. **131**(1): p. 17-20.
- Berganov, I., R. Isaev, and B. Makhkamdzhanov, Effect of soiling of the surface of photovoltaic cells on the efficiency of operation of solar sources of electricity. APPL. SOLAR ENERGY., 1986.
 22(4): p. 18-22.
- 83. Bajpai, S. and R. Gupta, *PERFORMANCE OF SILICON SOLAR-CELLS UNDER HOT AND DUSTY ENVIRONMENTAL-CONDITIONS.* INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1988. **26**(5): p. 364-369.
- 84. Michalsky, J., et al., *Design and development of a rotating shadowband radiometer solar radiation/daylight network.* Solar Energy, 1988. **41**(6): p. 577-581.
- 85. Ryan, C., F. Vignola, and D. McDaniels, *Solar cell arrays: Degradation due to dirt.* Proceedings of the American Section of the International Solar Energy Society, 1989: p. 234-237.
- 86. Said, S., *Effects of dust accumulation on performances of thermal and photovoltaic flat-plate collectors.* Applied Energy, 1990. **37**(1): p. 73-84.

- 87. Deffenbaugh, D.M., S.T. Green, and S.J. Svedeman, *The effect of dust accumulation on line-focus parabolic trough solar collector performance.* Solar Energy, 1986. **36**(2): p. 139-146.
- 88. Al-Alawy, I.T., *Wind and other factor requirements to solar energy applications in Iraq.* Solar & Wind Technology, 1990. **7**(5): p. 597-600.
- 89. Nahar, N. and J.P. Gupta, *Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India.* Solar & Wind Technology, 1990. **7**(2): p. 237-243.
- 90. Hasan, A. and A. Sayigh, *The effect of sand dust accumulation on the light transmittance, reflection, and absorbance of the PV glazing.* Renewable Energy, Technology and Environment. Pergamon Press, Oxford, 1992: p. 461-466.
- 91. Pande, P. Effect of dust on the performance of PV panels. in 6th International Photovoltaic Science and Engineering Conference, New Delhi. 1992.
- 92. Alamoud, A., *Performance evaluation of various photovoltaic modules in hot and arid environment.* Proceedings of the Intersociety Energy Conversion, 1993.
- 93. El-Nashar, A.M., *The effect of dust accumulation on the performance of evacuated tube collectors*. Solar Energy, 1994. **53**(1): p. 105-115.
- 94. Bowden, S., et al. High efficiency photovoltaic roof tiles with static concentrators. in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. 1994. IEEE.
- 95. Adanu, K. Performance of a 268 Wp stand-alone PV system test facility. in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on. 1994. IEEE.
- 96. Kattakayam, T.A., S. Khan, and K. Srinivasan, *Diurnal and environmental characterization of solar photovoltaic panels using a PC-AT add on plug in card*. Solar energy materials and solar cells, 1996. **44**(1): p. 25-36.
- 97. Becker, H., W. Vaassen, and W. Herrmann. *Reduced output of solar generators due to pollution*. in *Proc. 14th EU PV Conference, Barcelona*. 1997.
- 98. Hammond, R., et al. *Effects of soiling on PV module and radiometer performance*. in *Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE*. 1997. IEEE.
- 99. Offer, Z.Y. and A. Zangvil, *Reduction of solar mirror reflectivity by airborne particle accumulation in an arid region.* Applied solar energy, 1997. **33**(4): p. 37-42.
- 100. Goossens, D. and E. Van Kerschaever, Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance. Solar Energy, 1999.
 66(4): p. 277-289.
- 101. Mastekbayeva, G. and S. Kumar, *Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate.* Solar Energy, 2000. **68**(2): p. 135-141.
- 102. Biryukov, S., *Simultaneous microscopic study of dry deposition of dust and its washout by rains.* Journal of Aerosol Science, 1999. **30**: p. S577-S578.
- 103. Biryukov, S., *Degradation of reflectivity of parabolic mirror caused by dust on its surface.* Journal of Aerosol Science, 2000. **31**: p. 985-986.
- 104. Asl-Soleimani, E., S. Farhangi, and M. Zabihi, *The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran.* Renewable Energy, 2001. **24**(3): p. 459-468.
- 105. Hegazy, A.A., *Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors.* Renewable Energy, 2001. **22**(4): p. 525-540.
- 106. El-Nashar, A.M., *Effect of dust deposition on the performance of a solar desalination plant operating in an arid desert area.* Solar Energy, 2003. **75**(5): p. 421-431.
- 107. Badran, H., *Mirror cleaning and reflectivity degradation at 1300 and 2300m above sea level at Mt. Hopkins, Arizona.* Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004. **524**(1): p. 162-168.

- 108. Al-Hasan, A.Y. and A.A. Ghoneim, *A new correlation between photovoltaic panel's efficiency and amount of sand dust accumulated on their surface.* International Journal of Sustainable Energy, 2005. **24**(4): p. 187-197.
- 109. Kobayashi, S.-i., et al. *Degradation of output characteristics of a small photovoltaic module due to dirt spots.* in *Telecommunications Conference, 2005. INTELEC'05. Twenty-Seventh International.* 2005. IEEE.
- 110. Elminir, H.K., et al., *Effect of dust on the transparent cover of solar collectors*. Energy Conversion and Management, 2006. **47**(18): p. 3192-3203.
- 111. Kimber, A., et al. The effect of soiling on large grid-connected photovoltaic systems in California and the southwest region of the United States. in Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on. 2006. IEEE.
- 112. El-Nashar, A.M., *Seasonal effect of dust deposition on a field of evacuated tube collectors on the performance of a solar desalination plant.* Desalination, 2009. **239**(1): p. 66-81.
- 113. Al-Helal, I.M. and A.M. Alhamdan, *Effect of arid environment on radiative properties of greenhouse polyethylene cover*. Solar Energy, 2009. **83**(6): p. 790-798.
- 114. Clark, P., et al. SPARCLE: Electrostatic Tool for Lunar Dust Control. in SPACE, PROPULSION & ENERGY SCIENCES INTERNATIONAL FORUM: SPESIF-2009. 2009. AIP Publishing.
- 115. Vivar, M., et al., *Effect of soiling in CPV systems*. Solar Energy, 2010. **84**(7): p. 1327-1335.
- 116. Yerli, B., et al., *Effect of Derating Factors on Photovoltaics under Climatic Conditions of Istanbul.* World Academy of Science, Engineering and Technology, 2010. **68**: p. 1390-1394.
- 117. Mani, M. and R. Pillai, *Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations.* Renewable and Sustainable Energy Reviews, 2010. **14**(9): p. 3124-3131.
- 118. Miller, D.C. and S.R. Kurtz, *Durability of Fresnel lenses: a review specific to the concentrating photovoltaic application*. Solar energy materials and solar cells, 2011. **95**(8): p. 2037-2068.
- 119. Ju, F. and X. Fu. *Research on impact of dust on solar photovoltaic (PV) performance*. in *Electrical and Control Engineering (ICECE), 2011 International Conference on*. 2011. IEEE.
- 120. Cabanillas, R. and H. Munguía, *Dust accumulation effect on efficiency of Si photovoltaic modules*. Journal of Renewable and Sustainable Energy, 2011. **3**(4): p. 043114.
- 121. Sulaiman, S.A., et al., *Effects of Dust on the Performance of PV Panels*. World Academy of Science, Engineering and Technology, 2011. **58**: p. 588-593.
- 122. Zorrilla-Casanova, J., et al. *Analysis of dust losses in photovoltaic modules*. in *World Renewable Energy Congress–Sweden*. 2011.
- 123. Massi Pavan, A., A. Mellit, and D. De Pieri, *The effect of soiling on energy production for large-scale photovoltaic plants.* Solar Energy, 2011. **85**(5): p. 1128-1136.
- 124. Jiang, H., L. Lu, and K. Sun, *Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules.* Atmospheric Environment, 2011. **45(**25): p. 4299-4304.
- 125. Qasem, H., et al., *Dust effect on PV modules.* 2011.
- 126. Al-Busairi, H. and A. Al-Kandari. *Performance evaluation of Photovoltaic modules in Kuwait*. in *Third International Photovoltaic Science and Engineering Conference, Nov*. 1987.
- 127. Mekhilef, S., R. Saidur, and M. Kamalisarvestani, *Effect of dust, humidity and air velocity on efficiency of photovoltaic cells.* Renewable and Sustainable Energy Reviews, 2012. **16**(5): p. 2920-2925.
- 128. Mohamed, A.O. and A. Hasan, *Effect of Dust Accumulation on Performance of Photovoltaic Solar Modules in Sahara Environment.* Journal of Basic and Applied Scientific Research, 2012. **2**(11): p. 11030.

- 129. Qasem, H., et al., *Dust-induced shading on photovoltaic modules*. Progress in Photovoltaics: Research and Applications, 2014. **22**(2): p. 218-226.
- 130. Schumacher, J., J. Hansen, and J. Nevenzel, *Preliminary design report: New ideas for heliostat reflector cleaning systems.* NASA STI/Recon Technical Report N, 1979. **80**: p. 23809.
- 131. Muller, J., *Study of chemicals for solar mirror cleaning: final report.* Number 78622335H] McDonnell Douglas Astronautics Company (April 16, 1979), 1979.
- 132. Morris, V.L., *Cleaning agents and techniques for concentrating solar collectors*. Solar energy materials, 1980. **3**(1): p. 35-55.
- 133. Hoffman, A. and C.R. Maag, *Photovoltaic Module Soiling Studies May 1978-October 1980*1980: Jet Propulsion Laboratory, California Institute of Technology.
- 134. Niku, S.B., *Introduction to robotics: analysis, systems, applications*. Vol. 7. 2001: Prentice Hall New Jersey.
- 135. Song, W.-K., H. Lee, and Z. Bien, *KARES: Intelligent wheelchair-mounted robotic arm system using vision and force sensor.* Robotics and Autonomous Systems, 1999. **28**(1): p. 83-94.
- 136. Becker, C., et al., *Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications–Influence of substrate texture and temperature.* Energy Procedia, 2011. **10**: p. 61-65.
- 137. Kakizaki, T., J. Deck, and S. Dubowsky, *Modeling the spatial dynamics of robotic manipulators with flexible links and joint clearances.* Journal of Mechanical Design, 1993. **115**(4): p. 839-847.
- 138. Nof, S.Y., *Handbook of industrial robotics*. Vol. 1. 1999: John Wiley & Sons.
- 139. Rivin, E.I., *Mechanical design of robots* 1987: McGraw-Hill, Inc.
- 140. SolidWorks, I., *Solidworks corporation*. Concord, MA, 2002.
- 141.India,T.WormGearedDCmotor;Availablefrom:http://www.tradeindia.com/fp1071016/Wiper-Motor-ZD1530A-ZD2530A.html
- 142. Robotics, N. *Side shaft Bi Directional Encoded Motor*. Available from: <u>http://www.nex-robotics.com/products/170rpm-37dl-gear-motor-with-position-encoder.html</u>.
- 143. Robotics, N. *Motor Driver*. Available from: <u>http://www.nex-robotics.com/products/motor-drivers/hercules-lite-6v-16v-8amp-motor-driver-with-current-sensing.html</u>.
- 144. Robotics, V. *Chain and Sprocket* Available from: <u>http://www.vexrobotics.com/276-2252.html</u>.
- 145. Sonnenenergie, D.G.F., *Planning and installing photovoltaic systems: a guide for installers, architects and engineers* 2007: Earthscan.

ANNEXURE I

During working in open environment, several other factors acts upon SPCRA, like wind Speed, wind direction etc.

$$F_r = m_2 \ddot{r} - m_2 r \dot{\theta}^2 + m_2 g \sin \theta + k_h \sin \theta$$

Considering different wind speed conditions, acting from front at different tilt angles of SPCRA has been shown in below table no. 5.7. Also, keeping in mind that wind can act from any direction and the same has been shown in table no. 5.7.

ARM - 90 Degree **Inlet Velocity** Force on Arm (N) (m/s)**Pressure Load (Pa)** 1.2 0.8128 0.0934 5 14 1.609 10 55.54 6.406 93.74 10.816 13 141.9 16.379 16 222.2 25.629 20 25 346.8 40.01 ARM - 60 Degree 1.2 1.028 0.0637 17.69 1.0918 5 70.55 10 4.3445 7.329 13 119.1 16 180 11.0863 20 281 17.2952 438.7 25 26.9771 ARM - 29.8 Degree 0.9495 1.2 0.0159 16.36 0.2638 5 10 65.34 1.0366 13 1.7335 110.3 2.6125 16 167.2 261 4.0626 20 25 406.9 6.3176

Table No. 5.7: Wind force acting on SPCRA at different tilt angle of SPCRA

PUBLICATIONS

PhD Publications

Sl. No.	Details					
1.	Amit Kumar Mondal, Kamal Bansal. "A brief history and future aspects in Automatic					
	Cleaning Systems for Solar Photovoltaic Panels". Advanced Robotics. Vol. 29, Issue 8.					
	Page No. 515-524. Taylor & Francis.					
	DOI: 10.1080/01691864.2014.996602					
2.	Amit Kumar Mondal, Vivek Kaundal, Vindhya Devalla, Kamal Bansal. "Development of					
	a damper control system for combined cycle thermal gas power plant". ASME Gas					
	Turbine India 2014, New Delhi. 15 -17 Dec, 2014.					
	doi:10.1115/GTINDIA2014-8118					
3.	Amit Kumar Mondal, Kamal Bansal. "Structural analysis of Solar Panel cleaning					
	Robotic Arm". Current Science. Vol. 108, Issue 6. Page No. 1047-1052. Current					
	Science.					
4.	Vivek Kaundal, Amit Kumar Mondal, Paawan Sharma, Kamal Bansal. "Tracing of					
	Shading Effect on Underachieving SPV Cell of a SPV Grid using WSN". Journal of					
	Engineering Science and Technology. Vol. 18					

Other Publications

Sl. No.	Details
1.	Amit Kumar Mondal, Paawan Sharma, Mukul Gupta. "Robotics in India: Current
	scenario and future prospects in Education System". IEEE Robotics and Automation
	Magazine. (Under Review)
2.	Shival Dubey, Abhishek Sharma, Amit Kumar Mondal. "Integration of Solidworks and
	MATLAB (SimMechanics)". IEEE Robotics and Automation Magazine. (Under Review)
3.	N Dinesh Reddy, Amit Kumar Mondal, Gurshaant Malik. "Incremental Real-time
	Multibody VSLAM with Trajectory Optimization Using Stereo Camera". European
	Conference on Mobile Robots 2015, University of Lincoln, UK.
4.	Amiya Sagar Das, Prashant Dwivedi, Amit Kumar Mondal, R. Manohar Reddy, Adesh
	Kumar, Roushan Kumar. "Implementation of Breadth First Search for storage
	optimization in Random storage assignment of Automated Storage and Retrieval
	Systems". 1st International Conference on Nano-electronics, Circuits &
	Communication Systems. Ranchi, Jharkhand.
5.	Vindhya Devalla, Amit Kumar Mondal, A J Arun Jeya Prakash, Om Prakash.
	"Development of position tracking and guidance system for Unmanned powered
	parafoil aerial vehicle". 4th International Conference on. Reliability, Infocom
	Technologies and. Optimization (ICRITO 2015), Amity University, Noida, India. (Paper
	Accepted)
6.	Amit Kumar Mondal, Vivek Kaundal, Paawan Sharma, Vindhya Devalla. "ARM7 Based
	Multiparameter Fitness Monitoring System Using WPAN". Measurement. IEEE 10th

	International Conference on Industrial and Information Systems (ICIIS), University of
	Peradeniya, Peradeniya, Sri Lanka (Under Review)
7.	Vindhya Devalla, Amit Kumar Mondal, Om Prakash. "Angle of Attack, Pitch Angle and
	Glide Angle Modeling at Various Thrust Inputs for a Powered Parachute Aerial
	<i>Vehicle"</i> . First Aerospace Engineering Doctoral Student's Symposium, IIT Kanpur. 12
	May, 2014.
8.	Vindhya Devalla, Amit Kumar Mondal, Anant Wadhwa, Vivek Kaundal, "Design and
	Development of Autonomous Library Book Sorting Robot Using Wireless Sensor
	Networks and Color Detection" International Conference on Electrical and Electronics
	Engineering (ICEEE-2013), 11th March, 2013

Bio-Data

01.	Nar	ne in Full (Block Letters)	Amit Kumar Mondal		
02.	Postal Address in full (any change of address should be communicated at once to the Registrar of the University)		C/O S P Darmora, H.No. 199A, Panditwari Ph-2, Lane No. 8, Near Lovely Market, Dehradun, Uttarakhand. Pin- 248007		
03.	(a)	Telephone No., if any	Office () Resi ()		
	(b)	E-mail Address	akmondal1603@gmail.com; akmondal@ddn.upes.ac.in		
	(C)	Mobile No.	9557355689		
04.	Date and Place of Birth		March 16 th ,1988; Durgapur, West Bengal		
05.	Father's Name		Nemai Chandra Mondal		
			Lipika Mondal		
	Mo	her's Name			
06.	(a)	Name of the State to which you belong and your permanent	Permanent Residence: Durgapur,		
		residence with Tehsil & District	District: Burdwan,		
			State: West Bengal		
	(b)	State whether you belong to Scheduled Caste/Tribe/Backward Class	Scheduled Caste		

7. ACADEMIC QUALIFICATIONS (Please attach attested copies of certificates including date of Birth). Give details in chronological order starting with the highest degree)

Degree	Year	College/University	Divn.	% of Marks /CGPA	Remarks
PhD		University of Petroleum and Energy Studies			Thesis Submitted
M. Tech	2012	University of Petroleum and Energy Studies]st	84.8% (CGPA: 3.24/4)	
B. Tech	2009	Bankura Unnyani Institute of Engineering/ West Bengal University of Technology]st	70.6% (CGPA: 7.81/10)	

8. Teaching & Professional Experience

Position Held	Name of Organization	Period		Pay	Nature of
		From	То		WOIK
Doctoral Research Fellow	University of Petroleum and Energy Studies	May 21st ,2012	Till Date		Research activities and administrative functioning.
Course Coordinator	University of Petroleum and Energy Studies	July 1st ,2013	June 31st ,2014		Coordination of departmental activities for students
Sales & Service Engineer	Ladder Automation Solutions Pvt. Ltd.	June 2009	June 2010		Servicing, Commissionin g and Installation of PLC, SCADA, Electrical Panels

9 Course Taught (Give details in chronological order starting with the latest)

Name of the Course	Level (UG/PG)	Year in which taught	Class Strength
Programmable Logic Controller	UG	2015, 2014	60
Programmable Logic Controller and SCADA	PG	2014	20
Basic Electronics	UG	2014, 2013	60

10. Research Experience

(a) Post-doctoral Fellowship (Should have been availed at an institution other than the Ph.D. degree awarding Institution)

Organization, Country	Period from	То	Duration

(b) Sponsored Research Projects (Including in-house industrial projects)

Year of	Sponsoring	Title of Project	Amount of	Co-Investigators
Funding	Organization		Grant (In Lacs)	(if any)
2014	Incubation Funding- University of Petroleum and Energy Studies	Automatic Air Filling System for 4 Wheelers	1.98 (Phase 1)	Yes
2013	DST- SERB	Pipeline Surveillance Parachute Aerial Vehicle (PAV)	6.00	Yes

2012	Internal RnD	Design and	4.00	No
	Seed Fund-	development of		
	University of	3D Robotic Arm		
	Petroleum and	for Solar		
	Energy Studies	Photovoltaic		
		Panel Cleaning		
		using Atmel's		
		AVR		
		microcontroller		
		platform		

(c) Student Research – Doctoral Degrees

ſ	S.No.	Name of Student	Year of Completion	Title of Thesis	Co-Supervisors
					(if any)

(d) Student Research – Masters Degrees

S.No.	Name of Student	Year of Completion	Title of Thesis	Co-Supervisors
				(if any)
1.	Vaishali Gupta	2014	Human portable	Mr. Sushabhan
			Unmanned	Choudhury
			Ground Vehicle	

11. Publications

(a) Papers in SCI Journals (At the time of application, journal should be in latest Thomson Reuters SCI/SCIE/SSCI list)

S.No.	Author(s)	Year a	of	Title of Paper	Name of the	Name of	Impact
		Publicatio	n			the	Factor
					Journal, volume/	Publisher	
					page numbers,		

1.	Amit Kumar Mondal, Kamal Bansal	2015	Structural analysis of solar panel cleaning robotic arm	Current Science, Vol. 108, Issue 6, Page No. 1047 - 1052	Indian Academ y of Science	0.833
2.	Amit Kumar Mondal, Kamal Bansal	2015	A brief history and future aspects in Automatic Cleaning Systems for Solar Photovoltaic Panels	Advanced Robotics, Vol. 29 ; Issue 8	Taylor and Francis	0.562

Accepted

S.No.	Author(s)	Year of	Title of Paper	Name of the	Name of	Impact
		Publication		Journal, Volume/ page numbers,	the Publisher	Factor
1.						

(b) Papers in Non-SCI/SCIE/SSCI Journals

Published

S.No.	Author(s)	Year of	Title of Paper	Name of the	Name of the
		Publication		Journal, Volume/ page numbers,	Publisher

1.	Vivek	2015	Tracing o	f Shading	Journal	of	Elsevier
	Kaundal,		Effect	on	Engineerir	ng	
	Amit Kr.		Underachi	eving	Science	and	
	Mondal,		SPV Cell	of a SPV	Technolog	gy. Vol.	
	Dr.		Grid using	WSN	18 (A	ccepted	
	Paawan				and	Proof	
	Sharma, Dr.				Reading	Сору	
	Kamal				Supplied)		
	Bansal						

Accepted

S.No.	Author(s)	Year of	Title of Paper	Name	of the	Name of the
		Publication		Journal,	Volume/	Publisher
				page nu	mbers,	

(c) Papers in International Conferences (those held outside India)

S.No.	Author(s)	Year of	Title of Paper	Name and Place of
		Publication		Conference
1.	N Dinesh Reddy,	Paper	Incremental Real-	European
	Amit Kumar	Accepted	time Multibody	Conference on
	Mondal,		VSLAM with	Mobile Robots 2015,
	Gurshaant Malik		Trajectory	University of Lincoln,
			Optimization Using Stereo Camera	UK

(d) Papers in Indian Conferences

S.No.	Author(s)	Year of	Title of Paper	Name and Place of
		Publication		Conference
1.	Amit Kumar Mondal, Vivek Kaundal, Vindhya Devalla, Kamal Bansal	2015 (doi:10.1115 /GTINDIA201 4-8118)	Development of a damper control system for combined cycle thermal gas power plant	ASME Gas Turbine India 2014, New Delhi. 15th -17th Dec, 2014.

2.	Vindhya Devalla, Amit Kumar Mondal, Om Prakash	2014	Angle of Attack, Pitch Angle and Glide Angle Modeling at Various Thrust Inputs for a Powered Parachute Aerial Vehicle	First Aerospace Engineering Doctoral Student's Symposium, IIT Kanpur. 12th May, 2014.
3.	Amiya Sagar Das, Prashant Dwivedi, Amit Kumar Mondal, R. Manohar Reddy, Adesh Kumar, Roushan Kumar	2015	Implementation of Breadth First Search for storage optimization in Random storage assignment of Automated Storage and Retrieval Systems*	International Conference on Nano- electronics, Circuits & Communication Systems. Ranchi, Jharkhand. May 9 th – 10 th , 2015.
4.	Vindhya Devalla, Amit Kumar Mondal, A J Arun Jeya Prakash, Om Prakash	Paper Accepted	Development of position tracking and guidance system for unmanned powered parafoil aerial vehicle	4th International Conference on. Reliability, Infocom Technologies and. Optimization (ICRITO 2015), Amity University, Noida, India

* Using Bosch Rexroth PLC L 20 DP and Automation Studio Software.

(e) Books

Published

S.No.	Name of Book	Year of Publication	Name of Publisher	Co-authors (if any)

In Press

S.No.	Name of Book	Expected Year of Publication	Name of Publisher	Co-authors (if any)

12. Patents

S.No.	Author(s)	Year of Award	Title of Patent	Patent Number	International/ Indian
1,	Om Prakash, Amit Kumar Mondal, Vindhya Devalla, Anant Wadhwa, Shival Dubey	Filed	A System for Monitoring and Maintaining Air Pressure in Vehicles	Indian Patent- #1205/DEL/201 4 A	Indian
2.	Anant Wadhwa, Amit Kumar Mondal , Vindhya Devalla, Shival Dubey et al.	Filed	A System for Preventing Fuel Theft from Vehicle	Indian Patent- #365/DEL/2014 A	Indian

13. Projects

Seria I No.	Company, Place	Machine	Worked On
1.	Relaxo Footwear, Bhiwadi, Rajasthan	Bumping Machine	PLC: Schnieder
2.	Sri Sai Krishna Hydro Power Plant(Luni Unit 3), Baijnath, Himachal Pradesh	PLC Panel	SCADA: Win CC Flexible 2007
3.	Alex Packers, Rudrapur, Uttarakhand	Dimension Measuring Machine	PLC:Unitronics
4.	Bindal Paper Limited, 8th km Bhopa Rd. Muzzafarnagar, Uttar Pradesh	PLC Panel	SCADA: Win CC Flexible 2008
5.	Jindal Industries Limited, Hissar,Haryana	Hydrotester Pressure Machine	SCADA: Win CC Flexible 2008

6.	Havell's India Pvt. Ltd. Baddi, Himachal	SPM	SCADA: Win CC
	Pradesh		Flexible 2007

14. Industrial Experience

Period	Organization	Description of Work and Responsibilities
June 2009-	Ladder Automation	Servicing, Commissioning and Installation of
June 2010	Solutions Pvt. Ltd.	PLC, SCADA, Electrical Panels

15. Administrative Experience

Period	Organization	Designation	Nature of Responsibility
May 21st ,2012 – Till Date	University of Petroleum and Energy Studies	Doctoral Research Fellow	 To be responsible for all activities leading to University development Undertake research work in doctoral area Assisting Guide in developing research/ consultancy projects in concerned area of expertise Providing guidance to the students during tutorial/ assignment/ project work Coordinating with internal & external faculty for coursework development & up gradation Providing academic advice to all Centre for Continuing Education students to overcome their academic afflictions. Any other duties assigned by the management from time to time
March 1 st ,2014 – Till Date	University of Petroleum and Energy Studies	Technical Assistant (to Dean)	Research activities and administrative functioning for Dean, College of Engineering Studies, University of Petroleum and Energy Studies, Dehradun
June 1st ,2013 – July 31st ,2014	University of Petroleum and Energy Studies	Course Coordinator	 Coordination of departmental activities for students Bridging the gap between College and the students etc.

16. Details of Foreign Visits, if any

S.No.	Purpose	Place, Country	Duration

17. Membership of Professional Bodies/Societies (Please specify National/International)

S. No.	Activity	Details of the activity
1.	IEEE Membership	91149514
2.	ASME Membership	100768773

18. Awards, Honor's and Recognitions

S. No.	Year	Name of the Award/ recognition	Awarding Institute/ Organization	
1.	2015	RnD C ³ Research Publication Awards presented by Dr. C N R Rao, FRS	University of Petroleum and Energy Studies	
2.	2014	RnD C ³ Patent filing Award, presented by Dr. Rajendra Dobhal (Director- UCOST)	University of Petroleum and Energy Studies	
3.	2014	2 nd Prize in Start Up Weekend	University of Petroleum and Energy Studies	
4.	2013	Demonstrated PhD project "Design and I Manipulator for Solar Photovoltaic Clean India Dr. Pranab Mukherjee.	strated PhD project "Design and Development of Autonomous ator for Solar Photovoltaic Cleaning" to Honourable President of . Pranab Mukherjee.	

19. H-Factor:

Scopus H-Factor	
Scopus Citations (excluding self citations)	
Google H-Factor	1

Google Citations	4

https://scholar.google.co.in/citations?user=tPRaUCUAAAAJ&hl=en

20. Any Other Relevant Information supporting this application for a faculty position

1.	24 th National Conference on I.C. Engines and Combustion	Working as an organizing committee member
		http://www.24ncicec-upes.com/

- 21. References: (At least three names of referees with their clear and complete addresses. Referees should be persons with or under whom the candidate has worked and one of the referees should from the last Organization/Institute served).
 - Dr. Sanket Goel, VP- RnD, University of Petroleum and Energy Studies, Energy Acres, PO- Bidholi, Via- Premnagar, Dehradun, Uttarakhand. Pin- 248007.
 E-mail: sgoel@ddn.upes.ac.in

Phone: 0135-2102690/1; Extn: 1301

Mobile: 7579151182; 7830387542

2. Dr. Jitendra Kumar Pandey, AVP- RnD, University of Petroleum and Energy Studies, Energy Acres, PO- Bidholi, Via- Premnagar, Dehradun, Uttarakhand. Pin- 248007. E-mail: <u>jkpandey@ddn.upes.ac.in</u>

Phone: 0135-2102690/1; Extn: 1711

Mobile: 7579216817

 Mr. Kapil Dahiya. A- Plot No. C-20, Udyog Vihar, Phase-5 Gurgaon - 122016, Haryana, India Mobile: 9818622486