
1

“Implementation of Distributed Processing using Hadoop”

A

Project Report

submitted in partial fulfillment of the

requirements for the award of the degree of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE & ENGINEERING

by

Name Roll No.

Ayush Vardhan R610213014

Ishan Sharma R610213018

under the guidance of

Mr. Rajeev Tiwari

Assistant Professor, CIT, UPES

Department of Computer Science & Engineering

Centre for Information Technology

University of Petroleum & Energy Studies

Bidholi, Via Prem Nagar, Dehradun, UK

May – 2016

2

CANDIDATE’S DECLARATION

 I/We hereby certify that the project work entitled “Implementation of Distributed

Processing using Hadoop” in partial fulfillment of the requirements for the award of the

Degree of BACHELOR OF TECHNOLOGY in COMPUTER SCIENCE AND ENGINEERING

(with specialization in Mainframe Technology) and submitted to the Department of Computer

Science & Engineering at Center for Information Technology, University of Petroleum &

Energy Studies, Dehradun, is an authentic record of my/ our work carried out during a period

from February, 2016 to May, 2016 under the supervision of Mr. Rajeev Tiwari, Assistant

Professor, CIT, UPES.

 The matter presented in this project has not been submitted by me/ us for the award of

any other degree of this or any other University.

Ayush Vardhan Ishan Sharma

(R610213014) (R610213018)

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

Date: 17th May 2016 Mr. Rajeev Tiwari

 Project Guide

Mr. Hanumat G. Sastry
Program Head – CSE with Specialization in mainframe technology

Center for Information Technology

University of Petroleum & Energy Studies

Dehradun – 248 001 (Uttarakhand)

3

ACKNOWLEDGEMENT

We wish to express our deep gratitude to our guide Mr. Rajeev Tiwari, for all advice,

encouragement and constant support he has given us through out our project work. This work

would not have been possible without his support and valuable suggestions.

We sincerely thank to our respected Program Head of the Department, Mr. Hanumat G Sastry,

for his great support in doing our project in Distributed Processing with Hadoop at CIT.

We are also grateful to Dr. Manish Prateek, Associate Dean and Dr. Kamal Bansal, Dean

CoES, UPES for giving us the necessary facilities to carry out our project work successfully.

We would like to thank all our friends for their help and constructive criticism during our

project work. Finally we have no words to express our sincere gratitude to our parents who

have shown us this world and for every support they have given us.

Name Ayush Vardhan Ishan Sharma

Roll No. R610213014 R610213018

4

ABSTRACT

“Implementation of Distributed Processing using Hadoop” is a project which is going to

implement Distributed processing and explore its applications over centralized computing that

inculcates Dictatorship, administrative system, under-utilization of resources and higher initial

setup.

Distributed processing, a phrase that includes parallel processing where single node utilizes one

or more processors and resources of other nodes. Its is also known as distributed computing.

Distributed processing give more performance than single system. If any one node in this

environment goes down another will take care of the application and services that is available to

cater the business customers. There are no limitations on the resources, more resources can be

added easily.

The goal of the project is to implement distributed processing using Hadoop and then to

compare the results from distributed computing with that of result from centralized computing.

Hadoop is a Java based framework for running applications on large clusters of hardware.

Hadoop has a famous component - “HDFS” i.e, “Hadoop Distributed File System”, is a highly

fault-tolerant distributed system. Hadoop provides high throughput access to application data

and is suitable for application that have large data sets.

Hadoop is one of many ways Distributed Computing concept can be implemented, which is used

in this project. Hadoop environment is a trending technology for distributed storage and

distributed data processing of very large datasets on computer cluster. And so it is solving a big

problem of industry - “BIG DATA”.

5

TABLE OF CONTENTS

S.No. Contents Page No

1. Introduction 07

1.1. History 07

1.2. Requirement Analysis 07

1.3. Objective 07

1.4. Pert Chart Legend 08

2. System Analysis 09

2.1. Existing System 09

2.2. Motivations 09

2.3. Proposed System 09

2.4. Modules 10

2.4.1. Setting up Nodes for Hadoop Cluster 10

2.4.2. Developing and executing Map Reduce 10

3. Design 11

3.1. Modelling 11

3.1.1. Activity Diagrams 11

3.1.2. Data Flow Diagrams 11

3.1.3. Flow Chart 12

4. Implementation of Distributed Processing using Hadoop 13

4.1. Distributed Processing 13

4.2. Hadoop 13

4.2.1.Technical Specifications 13

4.2.2 Features 14

4.2.3 Applications 14

5. Implementation 15

5.1. Map Class 15

5.2. Reduce Class 15

6

5.3. Algorithms 15

6. Output screens 17

7. Limitations and Future Enhancements 20

8. Conclusion and References 21

7

1. INTRODUCTION

1.1 History

Computation demands were always higher than technical status. The use of concurrent processes

that communicate by message-passing has its root in Operating System architectures studied in

1960s. First widespread distributed system were Local Area Networks. Earliest example of a

large scale distributed application was Electronic Mail (Email), that was application of

ARPANET. Today various hardware and software architectures are used for distributed

processing.

1.2 Requirement Analysis

Requirement to set up a Hadoop cluster basically include following :

 1.2.1 Software Requirements:

 1.2.1.1 GNU/Linux is supported as development/production environment.

 1.2.1.2 Java 6.0 or above, must be installed

 1.2.1.3 SSH must be installed.

 1.2.2 Hardware Requirements:

 1.2.2.1 Minimum RAM of 4GB.

1.3 Objectives

Main objective is to set-up a Hadoop distributed processing environment in distributed mode.

Then implementing Map Reduce program that performs following tasks:

 1.3.1 Reading a large data set

 1.3.2 Getting useful insights

 1.3.3 Comparing the results with traditional system.

8

1.4 Pert Chart Legend

Fig: 1

9

2. SYSTEM ANALYSIS

2.1 Existing System

Centralized data processing is performed on a single computer/node or a cluster of coupled

computers in a single location. All data processing is performed on central computer. In a

centralized IT Infrastructure, a central computing facility is there where the entire data,

irrespective of source, origin and type are located and processed. Some advantages include: I)

Economies of scale in procurement of hardware. II) Easy maintenance and software facilities.

Centralized infrastructure was popular at time of business on Mainframe Computers. These

control systems were not very efficient and thus trend changed gradually.

2.2 Motivations

With the advancements in data communication technologies and availability of reliable data

communication facilities at low costs, business enterprises are switching over from centralized

data processing to other degrees of decentralized data processing or distributed data processing,

where it has low cost, reliability, flexibility, improved performance and reduced processing time.

2.3 Proposed System

There are many technologies that are implementing distributed computing advancement.

Hadoop is one of all those great technologies that solves Enterprise problems. Hadoop is an

open-source framework that allows to store and process big data in a distributed environment

across clusters of computers using simple programming models. It is designed to scale up from

single servers to thousands of machines, each offering local computation and storage. There are

three modes in which Hadoop can be deployed. These are:

 I. Stand-Alone mode

 II. Pseudo-Distributed mode

 III. Fully-Distributed mode

We are following fully distributed mode of Hadoop cluster where, ‘n’ number of machines

forming a Hadoop cluster. Hadoop daemons run on a cluster of machines. There is one host onto

which Name node is running and another host on which data node is running and then there are

machines on which task tracker is running. We have separate masters and separate slaves in this

distribution.

2.4 Modules

10

2.4.1 Setting up Nodes for Hadoop Cluster

Hadoop almost follows the UNIX pattern. Hadoop is installed in “/usr/lib/hadoop-0.20/”

directory. Setting up nodes for Hadoop cluster includes :

 I. Adding dedicated Hadoop system user.

 II. Configuring SSH

Then, hadoop is installed on machine that covers configuring three major files. 1. core-site.xml

2. hdfs-site.xml 3. mapred-site.xml. These files are located in “conf/” subdirectory. After

configuring these files, HDFS is formatted via node name. Then its the time to start your single

cluster. Similarly, Set up other clusters which will be inter-connected that would work as slave

and master node accordingly as per network configurations.

In hadoop environment, Name node is the one, where JobTracker runs and which accepts job

requests from clients while JobTracker is the one that schedules jobs and tracks the assign jobs

to Task tracker.

2.4.2 Developing and executing Map Reduce

MapReduce is a programming model and an associated implementation for processing and

generating large data sets with a parallel, distributed algorithm on a cluster. This is a

programming technique and program model to provide distributed computing with Java. This

algorithm works on “Divide and Conquer” algorithm. It performs two important tasks: Map and

Reduce. Map takes a set of data and converts it into another set of data, where individual

elements are broken down into (key/value pairs). Secondly, reduce task, which takes the output

from a map as an input and combines those data tuples into a smaller set of tuples. As the

sequence of the name MapReduce implies, the reduce task is always performed after the map

job.

During a MR job, Hadoop sends the map and reduce tasks to appropriate servers in the clusters.

11

3. MODELLING

3.1 Activity Diagrams

 Fig. 1

 Fig. 2

3.2 Data Flow Diagrams

 Fig. 3

12

3.3 Flow Chart

 Fig. 4

13

4. IMPLEMENTATION OF DISTRIBUTED PROCESSING

USING HADOOP

4.1 Distributed Processing

Distributed processing is a setup where multiple computer nodes work for same program

utilizing their resources. Its a rough synonym for parallel processing, in which users string

multiple computer together to achieve parallel processing. Here, a collection of computers

appear as a single-system image. Arrangement of networked computers in which data processing

capabilities are spread across the network. In DDP, specific jobs are performed by specialized

computers which may be far removed from the user and/or from other such computers.

4.2 Hadoop

The Apache Hadoop software library is a framework that allows for the distributed processing of

large data sets across clusters of computers using simple programming models. It is designed to

scale up from single servers to thousands of machines, each offering local computation and

storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to

detect and handle failures at the application layer, so delivering a highly-available service on top

of a cluster of computers, each of which may be prone to failures.

 4.2.1 Technical Specifications

 Hadoop consists of MapReduce, the Hadoop distributed file system (HDFS) and a

number of related projects such as Apache Hive, HBase and Zookeeper. MapReduce and

Hadoop distributed file system (HDFS) are the main component of Hadoop. Hadoop cluster has

3 components: 1. Client, 2. Master, 3. Slave. Client is the one who loads data and submit map

reduce jobs. Now, Name node, Secondary name node and Jobtracker combinely consist of

Masters.

Name Node oversees the health of Data Node and coordinates access to the data stored in Data

Node.

Job Tracker coordinates the parallel processing of data using MapReduce.

The job of Secondary Node is to contact NameNode in a periodic manner after certain time

interval(by default 1 hour). NameNode which keeps all file-system metadata in RAM has no

capability to process that metadata on to disk. So if NameNode crashes, you lose everything in

RAM itself and you don't have any backup of file-system. What secondary node does is it

contacts NameNode in an hour and pulls copy of metadata information out of NameNode. It

shuffle and merge this information into clean file folder and sent to back again to NameNode,

while keeping a copy for itself. Hence Secondary Node is not the backup rather it does job of

housekeeping.

http://www.businessdictionary.com/definition/network.html
http://www.businessdictionary.com/definition/delivered-duty-paid-DDP-named-port-or-place-of-destination.html

14

 4.2.2 Features

 Here are a few key features of Hadoop:

 I. Flexibility in data processing.

 II. Easily Scalable

 III. Fault Tolerant

 IV. Faster at data processing

 V. Cost effective.

 4.2.3 Applications

 Apache Hadoop, the open source MapReduce framework, has dramatically lowered the

cost barriers to processing and analyzing big data. Technical barriers remain, however, since

Hadoop applications and technologies are highly complex and still foreign to most developers

and data analysts. Talend, the open source integration company, makes the massive computing

power of Hadoop truly accessible by making it easy to work with Hadoop applications and to

incorporate Hadoop into enterprise data flows.

15

5. IMPLEMENTATION

5.1 Map Class

 Maps are the individual tasks which transform input records into a intermediate records. The

transformed intermediate records need not be of the same type as the input records. A given

input pair may map to zero or many output pairs. Maps input key/value pairs to a set of

intermediate key/value pairs.

5.2 Reduce Class

Reduces a set of intermediate values which share a key to a smaller set of values. Reducer has 3

primary phases:

-Shuffle

The Reducer copies the sorted output from each Mapper using HTTP across the network.

-Sort

The framework merge sorts Reducer inputs by keys (since different Mappers may have

output the same key).

The shuffle and sort phases occur simultaneously i.e. while outputs are being fetched

they are merged.

-Secondary Sort

To achieve a secondary sort on the values returned by the value iterator, the application

should extend the key with the secondary key and define a grouping comparator. The

keys will be sorted using the entire key, but will be grouped using the grouping

comparator to decide which keys and values are sent in the same call to reduce.

5.3 Algorithms

1. Start

2. Import java and hadoop libraries.

3. Create class WordCountMids {

4. Create a “Map” class which extends “MapReduceBase” and implements “Mapper”

 interface <LongWritable, Text, Text, IntWritable> .

5. IntWritable one <- new IntWritable(1)

6. Text word <- new Text()

16

7. Create a “map” function with arguments (LongWritable key, Text value,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

8. String line <- value.toString()

9. Scanner scanner <- new Scanner(line)

10. StringTokenizer tokenizer <- new StringTokenizer(line," ")

11. Check whether tokenizer has more value.

12. if yes,

 word.set(tokenizer.nextToken())

 output.collect(word, one);

// END OF map Method and “map” class.

13. Create a “Reduce” class which extends “MapReduceBase” and implements “Reducer”

 interface <Text, IntWritable, Text, IntWritable>.

14. Create a “reduce” function with arguments (Text key, Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output, Reporter reporter)

15. String search <- “apps";

16. int sum <- 0

17. Check for values (values.hasNext())

 if yes :

18. sum <- sum + values.next().get();

19. if(search.equals(key.toString())){

 output.collect(key, new IntWritable(sum));

 }

 //End of reduce method

 //End of Reduce class

19. Create main() method.

20. JobConf conf <- new JobConf(WordCountMids.class);

21. conf.setJobName("wordcountmids");

22. conf.setOutputKeyClass(Text.class);

23. conf.setOutputValueClass(IntWritable.class);

24. conf.setMapperClass(Map.class);

25. conf.setReducerClass(Reduce.class);

26. FileInputFormat.setInputPaths(conf, new Path(args[0]));

27. FileOutputFormat.setOutputPath(conf, new Path(args[1]));

28. JobClient.runJob(conf);

29. End Main.

30. End Class WordCountMids.

17

6. OUTPUT SCREENS

Master Node:

7. LIMITATIONS AND FUTURE ENHANCEMENTS

8. CONCLUSIONS

9. REFERENCES

Fig. 5

Fig. 6

18

Slave Node:

Fig. 7

Fig. 8

19

Running a Map-Reduce Job

Fig. 9

Fig. 10

20

Fig. 11

7. LIMITATIONS AND FUTURE ENHANCEMENTS

Distributed Computing is one of the major implementation of the Hadoop

Ecosystem. However despite of its overwhelming accomplishments there are

certain key points regarding its efficiency which are lacking and have not been

answered in years. Horizontal Scaling of the system proposes its own issues for the

infrastructure and management. It also presents a lot of challenges regarding

efficiency, but is better for enterprises with large data demands. This project can

also be expanded with the vertical scaling of the infrastructure i.e., by increasing

the number of cores, frequency of the CPU etc. higher efficiency can be achieved.

21

8. CONCLUSION

 Distributed Computing is one of the major implementation. However

despite of Hadoop's overwhelming accomplishments there are certain key points

regarding its efficiency which are lacking and have not been answered in years.

Horizontal Scaling of the system proposes its own issues for the infrastructure,

efficiency and management.

This project can also be expanded with the vertical scaling of the infrastructure i.e.

by increasing the number of cores, frequency of the cpu etc. higher efficiency can

be achieved.

9. REFERENCES

[1] Hadoop Tutorial. Ref: http://www.tutorialspoint.com/hadoop/, Cite: 2016.

[2] Jerry Zhao, Jelena Pjesivac-Grbovic, “MapReduce: The programming model and

practice”, Research At Google, 2009.

