INVESTIGATION OF SOIL-PIPE FORCES AND THE RESULTANT STRESS ANALYSIS FOR UNDERGROUND PIPELINES

A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Technology (Pipeline Engineering)

Submitted by:

Dan Jo Chacko Enrolment No: R150213010 SAP ID: 500026831

College of Engineering Studies University of Petroleum and Energy Studies Dehradun May, 2015

Wood Group Kenny India Pvt. Ltd 15th Floor, Tower B, Building No. 5 DLF Cyber Terraces, DLF Cyber City, Phase III Gurgaon-122002, Haryana

INVESTIGATION OF SOIL-PIPE FORCES AND THE RESULTANT STRESS ANALYSIS FOR UNDERGROUND PIPELINES

A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Technology (Pipeline Engineering)

Submitted by:

Dan Jo Chacko Enrolment No: R150213010 SAP ID: 500026831

Under the guidance of

Mr. Shriram Raghunathan

Pipeline Engineer Wood Group Kenny Gurgaon, India

Mr. Bhalchandra Shingan

Assistant Professor Department of Chemical Engineering UPES, India

Approved

Dr. Kamal Bansal Dean

College of Engineering University of Petroleum & Energy Studies Dehradun May, 2015

BONAFIDE CERTIFICATE

This is to certify that the work contained in this thesis titled "Investigation of Soil-Pipe Forces and the Resultant Stress Analysis for Underground Pipelines" has been carried out by Dan Jo Chacko under my/our supervision and has not been submitted elsewhere for a degree.

Mr. Bhalchandra Shingan Assistant Professor, Department of Chemical Engineering College of Engineering University of Petroleum & Energy Studies Dehradun

ABSTRACT

Pipelines are very important lifelines to modern society as they are used for the transport of energy and services. A good engineering design practice requires that environmental and economic factors need to be taken into consideration. This is often means that the overall design performance must be predicted beforehand. Analysing an underground pipeline is quite different from analysing basic piping. There are a number of unique characteristics of a pipeline like code requirements and techniques which are required for its analysis. Elements of analysis include pipe movement, anchorage force, soil friction, lateral soil force and soil-pipe interaction.

Pipelines can be buried in various environments with varying soil properties. As the soil properties differ, the stress on the pipeline varies. Based on soil information obtained from investigation along the pipeline route, geotechnical analyses are preformed to determine pipeline construction method. As the major segment of a pipeline is usually buried, soil-pipeline interaction analysis is the most important part of pipeline stress analysis. Before analysis, soil forces that are acting on the pipeline must be investigated.

In this paper, analytical and numerical solutions will be researched to determine the forces and the stresses in a buried pipeline. Application of stress analysis and comparing the soil pipe interaction allows one to assess the integrity of the pipeline. The purpose of this research is to aid in the selection of proper pipeline design and construction mode which will ensure pipeline integrity and minimize project costs. For the common case of buried pipelines built in backfilled trenches, stress analysis methods are employed to determine the necessary issues so as to determine the interaction with the native soil, that result in a significant increase or decrease in the force applied on the pipeline during ground movement. The described approach can be employed in project-specific analyses to determine soil pipe interaction, and thus avoid unnecessary excavation costs or mitigation measures.

AKNOWLEDGEMENTS

I would like to thank first and foremost my supervisor Mr Shriram Raghunathan (Pipeline Engineer, WGK India) whom without, I would never have completed this project. His outstanding support, guidance and time in assisting me throughout the project cannot be overlooked and for that I am extremely grateful.

I would like to thank Mr Juju Mathew (Director, Wood Group Kenny India) for his guidance and giving me the opportunity to do my thesis project in the company.

I would especially like to thank Mr Vishal Kumar (Head HR, WGK India) for giving me support and direction from day one.

I am indebted to the engineers at Wood Group Kenny namely Mr Vinsus Mathew, Mr Ashwani Kumar Singh, Mr Mohit Dangi, Mr Alen Alex Ninan and Mr Vijay Kumar Singh for helping me in times of need and teaching me necessary skills to overcome obstacles during my project.

I would like to show my gratitude my mentor and professor Mr. Bhalchandra Shingan for providing me with all the support during my project duration. Also to the University of Petroleum and Energy Studies for providing me with all that I needed to get through this year.

Special thank you goes to those closest to my heart, and most important individuals in my life, my family. My parents deserve a special mention as they have truly been the reason for me being at the position I am today. Their love and support is unparalleled and I am indebted to them more than they know.

Finally, I would like to thank anyone who was involved in my project as well as conveying my apologies that I was unable to mention everyone personally.

TABLE OF CONTENTS

ABSTRACT iv
AKNOWLEDGEMENTSv
LIST OF FIGURES ix
LIST OF TABLES xi
NOMENCLATURE xii
CHAPTER 1
1. INTRODUCTION
CHAPTER 2
2. LITERATURE REVIEW
2.1 Soil Model
2.2 Soil Spring models
2.3 Soil- Pipe Interaction Modes
2.3.1 Diametric Deflection
2.3.2 Axial Soil-Pipe Interaction7
2.3.3 Longitudinal Bending
CHAPTER 3 10
3. THEORETICAL DEVELOPMENT10
3.1 Forces in the Pipe11
3.1.1 Wall thickness:
3.1.2 Hoop Stress

3.1.3 Expansion and flexibility	2
3.1.4 Restrained Portions	1
3.1.5 Anchor Force	7
3.1.6 Moving Parts (Unrestrained lines)17	7
3.2 Soil forces	3
3.2.1 Axial friction force	9
3.2.1.1 Coefficient of friction sub axial friction force)
3.2.1.2 Density of backfill soil sub axial friction force	1
3.2.1.3 Angle of internal friction	1
3.2.2 Lateral Soil Force	2
3.2.3 Soil End Force	1
3.2.4 Longitudinal Pipe Movement	1
3.2.5 Lateral Pipe Movement	5
CHAPTER 4)
4. EXPERIMENTAL AND CALCULATIONS)
4.1 Soil and pipe force calculations	1
4.2 Soil- Pipe Interaction Calculations:	5
CHAPTER 5	2
5. RESULTS AND DISCUSSION	2
5.1 Tabulated Results	3
5.1.1 Ground type – Clay	3
Table 4: Tabulated results of clay ground profile	3

5.1.2 Ground type – Slit	44
5.1.3 Ground type – Sand	45
5.1. 4 Ground type – Concrete	46
5.1.5 Ground type – Rock	47
5.2 Thermal expansion	48
5.2.1 Temperature variance	48
5.2.2 Pressure Variance	49
5.2.3 Pressure and Temperature Variance	50
5.3 Graphical Analysis	51
5.3.1Angle of internal friction Vs Longitudinal end force	51
5.3.2 Angle of internal friction vs Lateral end force	51
5.3.3 Longitudinal soil end force Vs Longitudinal Displacement	52
5.3.4 Longitudinal Soil End Force Vs Lateral Movement	52
5.3.5 Ground Profile Vs Longitudinal Displacement	53
5.3.6 Ground Profile Vs Lateral Displacement	53
5.3.7 Ground Profile Vs Bending Stress	54
CHAPTER 6	56
6. CONCLUSIONS	56
REFERENCES	

LIST OF FIGURES

Figure 1: Various ground properties during for pipeline design and construction
Figure 2: Soil-Pipe interaction of Beam on Nonlinear Winkler Foundation (BNWF) model 5
Figure 3: Load distribution and ground settlement profile-Negative/Positive arching effect 7
Figure 4: Resulting ground movement due to axial pipe movement
Figure 5: Ground behavior due to settlement around a stationary pipe
Figure 6: Ground behavior die to downward pipe movement
Figure 7: Ground behavior due to horizontal pipe movement
Figure 8: Above ground piping
Figure 9: Underground piping
Figure 10: Free expansion of pipe with and without longitudinal pressure
Figure 11: The stresses acting on a pipe wall
Figure 12: Pipeline trenched in a certain depth of soil cover
Figure 13: Soil Pressure distribution
Figure 14: Angle of internal friction made due to lateral soil forces
Figure 15: Force distribution during longitudinal movement

Figure 16: Lateral movement of buried pipeline
Figure 17: Graph – Angle of internal friction Vs Longitudinal end force
Figure 18: Graph - Angle of internal friction Vs Lateral end force
Figure 19: Graph - Longitudinal soil end force Vs longitudinal movement
Figure 20: Graph - Longitudinal soil end force Vs Longitudinal movement
Figure 21: Ground profile Vs Longitudinal displacement
Figure 22: Graph - Ground profile Vs Lateral displacement
Figure 23: Ground profile Vs bending stress

LIST OF TABLES

Table 1: Friction Coefficients for some Common Materials with steel
Table 2: Typical values of dry density of various soil types, concrete and rocks 21
Table 3: Angle of Internal Friction for different soil types 22
Table 4: Tabulated results of clay ground profile 43
Table 5: Tabulated results of Slit ground profile
Table 6: Tabulated results of Sand ground profile
Table 7: Tabulated results of Concrete ground profile 46
Table 8: Tabulated results of Rock ground profile 47
Table 9: Thermal expansion rate during temperature change
Table 10: Thermal expansion rate during pressure change
Table 11: Thermal expansion rate during both temperature and pressure change

NOMENCLATURE

Ca	- Corrosion allowance
SMYS	- Specified minimum yield strength
LF	- Longitudinal Joint Factor
Р	- Internal pressure, psi
D	- Diameter, in
t	- Nominal wall thickness of pipe, inch
l	- Length of a pipe section, inch
T_I	- Temperature that the time of installation, $^\circ F$
T_2	- Maximum operating temperature, °F
α	- Linear coefficient of thermal expansion, inch/inch/°F
ν	- Poisson's ratio (0.3 for steel)
S_h	- Hoop stress due to fluid pressure, psi
S_L	- Longitudinal stress in the pipe, psi
Ε	- Modulus of elasticity of pipe, psi
Δ	- Net free expansion, inch
f	- Axial friction force, lbs/in

μ	- Coefficient of friction between pipe and soil
γ	- Density of backfill soil, lbs/ft ³
Н	- Depth of soil cover to top of pipe, ft.
W_p	- Weight of pipe and content, lbs/ft
U	- Ultimate soil resistance, lbs/ft
θ	- Angle pipe makes with soil during displacement
Κ	- Elastic constant, lbs. /inch
K_o	- Ccoefficient of lateral soil pressure
L	- Active length, inches
F	- Anchor force or expansion force, lbs
Q	- End resistance force, lbs.
β	- Constant $\sqrt{\frac{K}{4EI}}$
С	- Constant
Ι	- Moment of inertia
Ζ	- Section modulus, inches ³

CHAPTER 1

1. INTRODUCTION

One of the major factors that affect good engineering is that favorable economic designs are provided at an acceptable safety range. More often than not engineers are bound with the problem of predicting the performance of a system with little information and data.

Pipelines are one of the safest and most economical means of transporting hydrocarbons, gases, water and other fluids or slurries. Pipelines are usually buried to increase the economic feasibility of the oil and natural gas. These buried pipelines are subjected to a multiple external loads. As pipelines are a serious asset, they can cause serious economic and environmental consequences if they fail in any way.

The pipeline industry has been interested in predicting soil and pipe behavior when the pipeline is subjected to external loadings so as to minimize the risk of any accident, injury and material loss and also to prevent the damages that cause a great risk to the environment. Pipelines are generally designed on the basis of the, flow requirements and the operating pressure. For buried pipelines, additional design requirements are needed such as the maximum and minimum cover depth, the trench geometry and backfill properties. Owing to the highly nonlinear behavior of soil material, pipe-soil interface phenomena, and the possibility of pipe distortion, buried pipesoil system has a relatively complex behavior.

Pipe soil interactions are usually used to investigate the various stresses created due to the pipeline operating parameters, external loads and soil properties. Soil pipe interaction gives a proper understanding of how the stresses are created and varies in the soil across the length of the pipeline.

To ensure a realistic and acceptable analysis it is important that any significant interaction process between the pipe and the soil is recognized and represented in the calculations. This is necessary for the identification, experimental investigation and theoretical modelling of the soilpipe interaction under appropriate loading conditions leading to a gradual improvement of the modelling of buried pipelines.

This paper will investigate the various stresses that occur in a pipeline due with a major concern on how they vary with soil properties and soil types. The type of soil which is predetermined by the surveyor plays an important role in predetermining the stresses in the pipeline as all stresses will be calculated with regards to the surveyed soil. If at all the surveyed soil turns out to be incorrect, during the time of construction it will hinder great problems as re-engineering and replanning of the project will be needed. Also the scope of the project gets hindered as there will be economic losses followed by time delays.

Soil types greatly hinder the stresses that are created with regards to soil pipe interaction, thus a proper investigation on how these variables varies due to different boundary conditions will be studied. A numerical analysis will be investigated on how these stresses changes with various soil types including hard rocks.

CHAPTER 2

2. LITERATURE REVIEW

One of the major however usually neglected problem in the pipeline industry is the soil and pipe interaction and its complexity. If at all a natural disaster involving ground movement such as an earthquake occurs, the nonlinear behavior of the soil further increases the complexity. This complexity is credited to the soil rather than the pipe. However in this thesis will not include external loadings.

2.1 Soil Model

When comparing other engineering materials such as steel and concrete, soil behavior is very difficult to predict. This is because soil is a multi-phase material consisting mainly solid particles, water and air (or sometimes oil and gas may be present). These make the components of soil very complex. The soil properties vary across the region to region across the field.

To describe the behavior of soil, many conceptual models have been developed. All of them are the simplifications of real soil behavior and concentrated on some particular aspect. Some of the models are relatively simple, but some of them are very complex. However, there is no unique model yet developed that is valid for all geologic materials under all loading and physical conditions, this is still true today (FaiNg, 1994).

The classification of soils (Indian Standard 1498, 1970)

a) Clay

An aggregate of microscopic and sub-microscopic particles derived from the chemical decomposition and disintegration of rock constituents. It is plastic within a moderate to wide range of water content.

b) Slit

It is a fine-grained soil with little or no plasticity. If shaken in the palm of the hand, a part of saturated inorganic silt expels enough water to make its surface appear glossy. If the pat is pressed or squeezed between the fingers, its surface again becomes dull.

c) Sand and gravel

Cohesion-less aggregates of angular, sub-angular, sub-rounded, rounded, flaky or flat fragments of more or less unaltered rocks or minerals. Particles from 0.06mm up to 2mm are referred to as sand, and those with a size greater than 2mm to 60mm as gravel

LEG	END
	END SAND SANDY CLAY GRAVELLY CLAY CLAYEY SAND CLAYEY SILT WEATHERED ROCK SILTY SAND WITH GRAVELS HARD ROCK SILTY CLAY MURRUM BLACK COTTAN SANDY SILT SILTY SAND SANDY CLAY WITH GRAVELS
	Sandy clay with gravels Silty clay with gravels
	CLAYEY SAND WITH GRAVELS BOULDERS+SOFT ROCK SAND WITH GRAVELS
Ļ	REFUSAL (WT) WATER TABLE

Figure 1: Various ground properties during for pipeline design and construction

2.2 Soil Spring models

A study was done on the Guidelines for Seismic Design of Buried Pipelines by Suresh R. Dash and Sudhir K. Jain in 2007. They analyzed a number of important pipelines and came out with a finite element model that best represents the non-linearity of the system. The models used to represent the soil pipe interaction are *Continuum model, Soil mesh finite element model and Beam on Nonlinear Winkler Foundation model*. In a continuum model a rigorous mathematical formulation is devised for a flexible pipe of finite length embedded in a semi-infinite soil medium and in a Soil mesh model the complicated nonlinearity of the system is modeled. Whereas in the Beam on Nonlinear Winkler Foundation (BNWF) model the soil is represented by independent springs lumped at discrete locations of the pipe. The BNWF model is extensively used in practice due to its simplicity, mathematical convenience and ability to incorporate nonlinearity. (Dash, 2007)

The pipe can either be modeled as a three dimensional shell element or as a two dimensional beam element depending on the pipeline geometry and loading condition as shown in figure1. The soil surrounding the pipe is modeled as nonlinear springs. Basically four types of springs are used to model the surrounding soil as:

- i) Axial soil spring: Represents soil resistance over the pipe surface along its length.
- ii) Lateral soil spring: Represents the lateral resistance of soil to the pipe movement.
- iii) Vertical bearing spring: Represent the vertical resistance of soil at the bottom of the pipe.
- iv) Vertical uplift spring: Represent the vertical resistance of the soil at the top of the pipe.

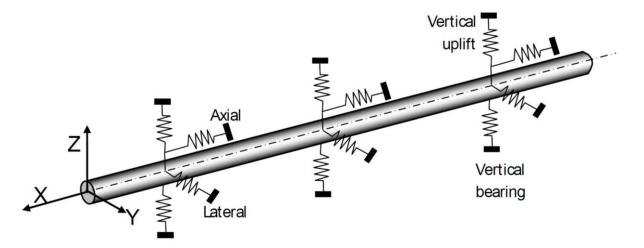


Figure 2: Soil-Pipe interaction of Beam on Nonlinear Winkler Foundation (BNWF) model

2.3 Soil- Pipe Interaction Modes

The stress which is observed in a pipe line is quite different from those stresses that are observed in a process piping or free standing pipe. Underground pipelines/buried pipelines experiences an interaction between the soil and the pipe.

Cases when an external load acts on a buried pipe, the actual magnitude and distribution of the soil pressure around the pipe is difficult to estimate accurately and is related to the depth of burial, geometry and plan of the site, pipe stiffness and mechanical properties of the soil. The complete definition of the soil-pipe system also requires specification of the load transfer conditions at the soil/pipe interface. Tangential load conditions may vary between non-slippage and full slippage but normally non-slippage until a prescribed stress is reached.

2.3.1 Diametric Deflection

The vertical load acting on a pipe is very much influenced by the arching action of the surrounding soil. For rigid pipes, the deformation of the pipe crown is generally very small when compared with the soil deformation on either side of the pipe. This differential settlement of the soil gives rise to the concentration of load on the pipe crown and this is called the negative arching effect of soil. The horizontal stresses caused by pipe deformation remain practically unchanged in this case. For flexible pipes, soil arches will be formed around the pipe due to the large downward deflection of the pipe crown, thus reducing the external load imposed on the pipe. This is called positive arching action. In addition to the downward deflection of the crown, the two sides of the pipe also deflect, in this case horizontally outwards. This will generate lateral passive resistance in the soil resulting in an increase of the horizontal stresses. (FaiNg, 1994)

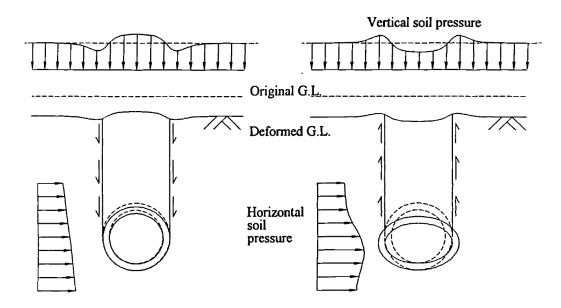


Figure 3: Load distribution and ground settlement profile-Negative/Positive arching effect.

2.3.2 Axial Soil-Pipe Interaction

The ground movement acting horizontally and parallel with the longitudinal axis of a pipe may create a soil pipe interaction if the axial stiffness of the pipeline permits it to resist the deformation of the ground. The relative soil/pipe movement is usually concentrated in a narrow annular zone where shear failure and slippage occurs at the soil/pipe interface. The relative movement decreases rapidly away from the pipe surface.

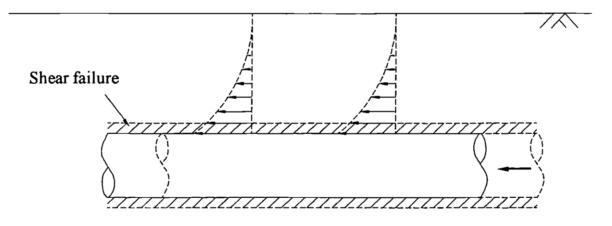


Figure 4: Resulting ground movement due to axial pipe movement

2.3.3 Longitudinal Bending

If a very flexible pipe passes through a soil displacement field, it will follow the ground displacement profile exactly. For a more rigid pipe, the bending stiffness of the pipe will provide a certain restraint to the pipe displacement which will be different to that of the soil. The loading along the pipe may vary according to the relative displacement between the soil and the pipe, reaching a maximum value where the soil adjacent to the pipe is brought to complete failure. The maximum restraint that can be offered by the soil may be influenced by the direction in which ground movement takes place (upward, downward and lateral movements).

The settlement of the soil past a pipe will enforce that the soil is loaded from the material above the pipe or the soil is moving downwards. Excessive relative movement between the soil and the pipe will produce tensile and shear failure in the overlying soil leading to the development of a soil wedge over the pipe rather than complete failure of the surrounding soil. (FaiNg, 1994)

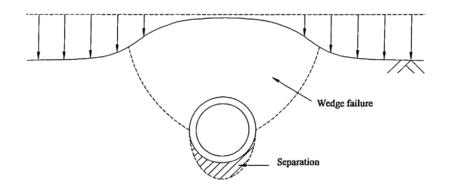


Figure 5: Ground behavior due to settlement around a stationary pipe

Conversely, if the soil is moving upward relative to the pipe, restraint will be provided by the passive resistance of the underlying soil. The soil resistance will increase with the displacement of the pipe reaching a maximum value when the surrounding soil has been brought to complete failure.

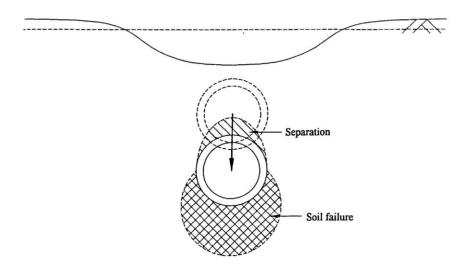


Figure 6: Ground behavior die to downward pipe movement

Horizontal movement of the ground in a direction perpendicular to the longitudinal axis of the pipe may produce a similar effect as upward movement of the soil. Horizontal passive resistance is produced by the soil in front of the pipe. If the depth of burial is too shallow, wedge failure of the soil may occur in front of the pipe.

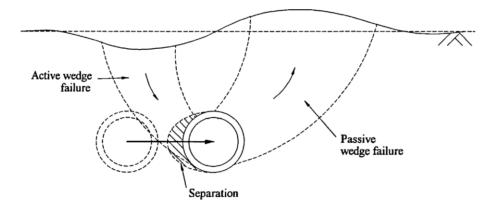


Figure 7: Ground behavior due to horizontal pipe movement

CHAPTER 3

3. THEORETICAL DEVELOPMENT

When considering the stresses in a pipeline to a process piping system it is quite different. A pipeline has unique characteristics which involves the analysis of techniques and code requirements. These elements of pipeline analysis include pipe movement, anchorage force, soil friction, lateral soil force and soil pipe interaction.

The main characteristics of a pipeline include:

• High allowable stress

A pipeline has a rather very simple shape. It is circular and very often runs to several miles before making a turn. And even if a turn is made it is not very a sharp turn compared to process piping. Therefore, all the stresses in the pipeline can be calculated by simple static equilibrium formulas which have proven to be very reliable. Since stresses are predictable, the allowable stress used is considerably higher than used in the plant piping.

High pressure elongation

The movement of a pipeline occurs usually due to the expansion of a very long line at low temperature difference. Pressure elongation, is actually neglected in process/plant piping, whereas pressure is what actually contributes to much of the total movement and is included in the analysis of stresses in a pipeline.

• High yield strength pipe

A pipeline operating beyond yield strength may not create structural integrity problems. However it may create a rise to undesirable excessive deformations and can always give cause a possibility of strain to follow up. For this reason a high test line pipe with a very high yield to ultimate strength ratio is normally used in a pipeline construction. Yield strength can be as high as 80 % of ultimate strength. All other allowable stress is then based with regards to the yield strength. (ASME B31.4, 2002)

• Soil-pipe interaction

The major portion of a pipeline is usually buried underground. Any pipe movement that occurs has to overcome the soil force. This force can be divided into two categories:

- i) Friction force : This force is created from sliding
- ii) Pressure force : This is the force resulting from pushing

3.1 Forces in the Pipe

There are a number of steps when doing Soil-Pipe interaction analysis.

3.1.1 Wall thickness:

One of the first steps required in stress analysis is calculating the wall thickness required.

As per ASME B31.4 nominal wall thickness for a straight pipe under internal pressure is given by the following expression:

$$t = \frac{PD}{2 \times SMYS \times LF \times F}$$

$$t_{sel} = t + Ca$$

Where,

t	- Minimum wall thickness
Ca	- Corrosion allowance
Р	- Design internal pressure
D	- Pipeline outside diameter
SMYS	- Specified minimum yield strength
F	- Applicable design factor
LF	- Longitudinal Joint Factor

3.1.2 Hoop Stress

Hoop stress is the stress in a pipe wall, acting circumferentially in a plan perpendicular to the longitudinal axis of the pipe and produced by the pressure of the fluid in the pipe. The hoop stress, then, is an action which is attempting to pull the pipe apart in a circumferential direction with the "pull" being produced on the pipe wall by the internal pressure of the natural gas or other fluid in the pipe.

$$S_h = \frac{PD}{2t}$$

Where:

Sh - Hoop stress, psi
P - Internal pressure, psi
D - Diameter, in
t - Wall thickness, in

3.1.3 Expansion and flexibility

One of the major tasks of stress analysis is flexibility analysis. A pipeline is classified in to two categories: *restrained lines* and *unrestrained lines*. A pipeline whether it is buried or above ground has both fully restrained portions and moving portions. The moving portions, which are equivalent to the codes unrestrained lines, will generally create significant bending stress. (Technical pipe analysis, 2013)

Usually in an above ground pipeline restrained portions are always prevented from movement, by the installation of anchors and guides. However in a buried line a large portion is fully restrained by soil friction only.

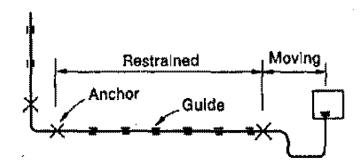


Figure 8: Above ground piping

Figure 9: Underground piping

When a line is pressurized and heated, corners C, D and G will starting moving. The movement thereafter creates a soil frictional which is proportional to the length of the moving portion of the pipe. If the total friction force developed along the pipe is sufficient to suppress expansion, the movement will stop. Points B, E and F where the movement stops are called virtual anchor points. Nonmoving portions AB and EF are called fully restrained lines. (Line size , 1999)

3.1.4 Restrained Portions

A force is required to bring the pipe the pipe from its free expanded or contracted position to the original position, to prevent movement of the pipe. In a fully restrained line longitudinal pressure stress is absorbed by the anchor or soil friction and does not come into the picture. Considering a pipeline that has the following properties and features:

L	- Length of a pipe section, inch
T_{l}	- Temperature that the time of installation, $^\circ F$
T_2	- Maximum operating temperature, °F
α	- Linear coefficient of thermal expansion, inch/inch/ $^{\rm o}F$
ν	- Poisson's ratio (0.3 for steel)
S_h	- Hoop stress due to fluid pressure, psi
S_L	- Longitudinal stress in the pipe, psi
Ε	- Modulus of elasticity of pipe, psi
Δ	- Net free expansion, inch
t	- Nominal wall thickness of pipe, inch

When a temperature reaches T_2 the pipe section will expand $\alpha(T_2 - T_1)L$, however the hoop tensile stress will make it to shrink to vShL/E. When steel is stretched one inch in one direction, it will shrink 0.3 inch each in both perpendicular directions. This phenomenon of shrinkage is called Possions shrinkage, and 0.3 is the Poisson ratio of steel. (Joshi, Cherian, & Rao, 2001)

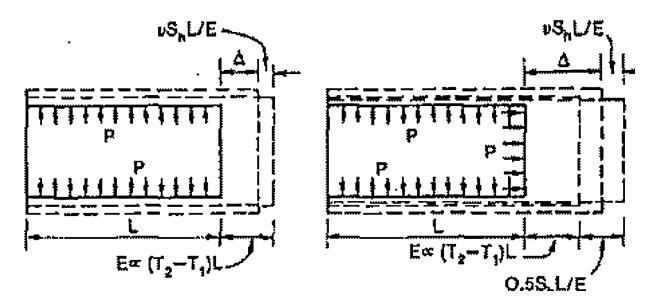


Figure 10: Free expansion of pipe with and without longitudinal pressure

When subtracting the Poission shrinkage from the expansion, net expansion becomes,

$$\Delta = \alpha (T_2 - T_1)L - \frac{\nu S_h L}{E}$$

Also the longitudinal stress which is produced is equivalent to the stress which is required to squeeze Δ back to its original position.

Since,

$$S_L = -\frac{E\Delta}{L}$$

Therefore,

$$S_L = -E\alpha(T_2 - T_1) + \nu S_h$$

This is equations are taken from ASME 31.4. However the sign has been reversed such that the minus means it is a compressive stress. The net longitudinal stress becomes compressive for a reasonable increase of T_2 . The combined equivalent stress shall not exceed 90 percent of SMSY.

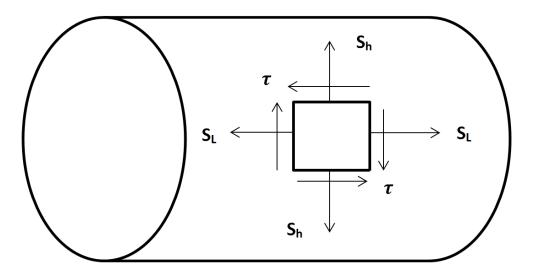


Figure 11: The stresses acting on a pipe wall

From the theory of principle stresses, the maximum shear stress in a pipe can be shown as:

$$\tau_{max} = \sqrt{\frac{(S_h - S_L)^2}{4} + \tau^2}$$

Where τ is shear stress in the principle axes o the pipe. The shear yield stress equals one half of tensile yield stress, an equivalent tensile stress is defined as twice the maximum shear stress. The equivalent tensile stress can be therefore said to be,

$$S_e = 2 \times \tau_{max}$$
$$S_e = \sqrt{(S_h - S_L)^2 + 4\tau^2}$$

 S_e is to be limited to 0.9 SMYS.

3.1.5 Anchor Force

An anchor is usually installed to limit the end movement of the pipe. It is the anchor that separates the restrained position from the moving portion of the line. The anchor force comes from both sides, the longitudinal stress from the restrained side and pressure force from the moving side. Since longitudinal pressure stress equals to $0.5S_h$ the anchor force can be therefore expressed as:

$$F = A(0.5S_h - S_L)$$

Or

 $F = A[(0.5 - \nu)S_h + E\alpha(T_2 - T_1)]$

Where the A is the area is the area of the pipe $A = \pi Dt$

3.1.6 Moving Parts (Unrestrained lines)

Usually the temperature change in a pipeline is not very high. The expansion due to pressure effect is significant and is usually ignored. When the pipeline reaches an operation temperature of T_2 , the pipe expands in every direction. (Peng, 1988)

When considering the longitudinal direction, the thermal expansion is

$$\alpha(T_2 - T_1)L$$

Applying the longitudinal pressure, the pipe will expand $0.5S_hL/E$ in the longitudinal direction but will shrink in the diametrical directions. Adding the radial pressure or the *Hoop stress*, the pipe shrinks to $0.3S_hL/E$ in the longitudinal direction due to Possion effect. Therefore the net longitudinal expansion is :

$$\Delta = \alpha (T_2 - T_1)L + \left(\frac{0.5S_hL}{E} - \frac{0.3S_hL}{E}\right)$$

Now since strain $\varepsilon = \Delta/L$ we can use the net longitudinal expansion to get the expansion rate

$$\varepsilon = \alpha (T_2 - T_1) + \frac{0.2S_h}{E}$$

The net expansion rate is equivalent to strain resulting from a pull by a force having the same magnitude as the anchor force. Therefore we can say that, the anchor force is referred to as potential expansion force. (Chaun, 1978)

3.2 Soil forces

The major portion of a pipe line is normally buried. The soil-pipe interaction analysis is the most important part of pipeline stress analysis.

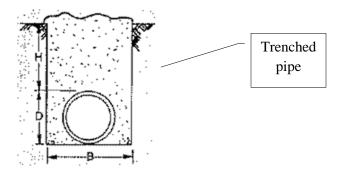


Figure 12: Pipeline trenched in a certain depth of soil cover

A pipe line buried in a ditch or a trench. Because of the soil backfill and the pipe's own weight, the pipe receives a soil pressure acting at its surface. The pressure creates a bending stress on the pipe wall and at the same time produces a soil friction force against any axial pipe movement. Except in highway or railroad crossings, the bending stress created by uneven soil pressure is negligible.

3.2.1 Axial friction force

The friction force is the first soil force that affects any pipe movement. The axial pipe movement gives rise to axial friction force. Theoretically, friction force is equal to the product of the friction coefficient and the total normal force acting all around the pipe.

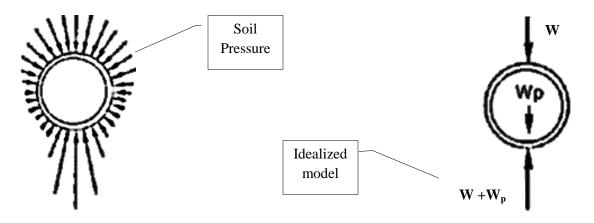


Figure 13: Soil Pressure distribution

The normal force acting on the pipe surface can be divided into top force, W, and bottom force, W + Wp, where Wp is the weight of the pipe and its content. When the soil cover depth ranges from one to three times the pipe diameter, the force can be taken as the weight of the soil with addition over the pipe.

Therefore the axial friction force is given by:

$$f = \frac{\mu (W + W + W_p)}{12}$$

Or

$$f = \frac{\mu (2\gamma DH + W_p)}{12}$$

Where,

f	- Axial friction force, lbs/in
μ	- Coefficient of friction between pipe and soil
γ	- Density of backfill soil, lbs/ft ³
D	- Outside diameter of pipe (1-3 times the diameter), ft
Н	- Depth of soil cover to top of pipe, ft.
W_p	- Weight of pipe and content, lbs/ft

The soil density and friction coefficient are obtained from soil tests performed along the pipe line route while doing the initial survey. However in this thesis we will be using various soil densities and their respective friction coefficients to compare how the soil-pipe forces various for each type.

3.2.1.1 Coefficient of friction sub axial friction force

The friction force is the force exerted by a surface when an object moves across it - or makes an effort to move across it.

Type of Soil	Friction Coefficient
Slit	0.3
Sand	0.4
Gravel	0.5
Concrete	0.45

 Table 1: Friction Coefficients for some Common Materials with steel

 http://www.engineeringtoolbox.com/friction-coefficients-d_778.html (Engineering tool box, 2013)

3.2.1.2 Density of backfill soil sub axial friction force

Density, as applied to any kind of homogeneous monophasic material of mass M and volume V, is expressed as the ratio of M to V. Under specified conditions, this definition leads to unique values that represent a well-defined property of the material. The soil bulk or dry density is the ratio of the mass of the solid phase of the soil to its total volume.

Soil Type	Dry Density γ	
	g/cm ³	lb/ft ³
Clay	1.20	74.9135
Clay Loam	1.28	79.9077
Slit loam	1.28	79.9077
Loam	1.36	84.9020
Sandy loam	1.44	89.8962
Sand	1.52	94.8905
Concrete	2.40	149.8271
Rock	2.40 - 3.50	149.8271 - 218.4978

Table 2: Typical values of dry density of various soil types, concrete and rocks http://web.ead.anl.gov/resrad/datacoll/soildens.htm (Carter, 2002)

3.2.1.3 Angle of internal friction

It is basically the angle that the pipe makes with soil while displacement takes place.

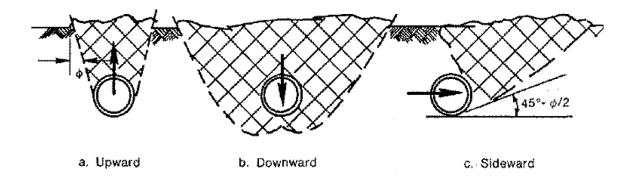


Figure 14: Angle of internal friction made due to lateral soil forces

Soil Type	θ° degree	
Slits	26 - 35	
Sand: Rounded grains		
Loose	27 - 30	
Medium	30 - 38	
Dense	35 - 38	
Sand: Angular grains		
Loose	30 - 35	
Medium	35 - 40	
Dense	40 - 45	
Gravel with sand	34 - 48	

 Table 3: Angle of Internal Friction for different soil types

 http://www.geotechnicalinfo.com/angle_of_internal_friction.html (Geo, 2001)

3.2.2 Lateral Soil Force

The lateral force can be ideally classified as into two stages;

Elastic stage, where resistance force is proportional to pipe displacement

Plastic stage, where resistance remains constant regardless of displacement.

Though the elastic constant can be evaluated directly by tested or published methods, they are generally very sensitive to the data gathered. An alternate method is to calculate from the more reliable ultimate resistance. It has been studied that the displacement required to reach ultimate resistance is about 1.5 to 2 percent of the pipe bottom depth. (Talesnick, Xia, & Moore, 2011)

When a pipe moves horizontally (figure 7), it creates a passive soil pressure at the front of the pipe surface. At the same time the pipe receives an active soil force at the back side. Due to this arch action, a void is created behind the pipe as soon as it moves a small distance. The active soil force can therefore be disregarded. The only lateral force is the passive soil force.

The lateral force is given by the formulae:

$$U = \frac{1}{2}\gamma(H+D)^2 \tan^2\left(45 + \frac{\theta}{2}\right)$$

Where,

U	- Ultimate soil resistance, lbs/ft
θ	- Angle pipe makes with soil while displacement takes place
γ	- Density of backfill soil, lbs/ft ³
D	- Outside diameter of pipe (1-3 times the diameter), ft
Н	- Depth of soil cover to top of pipe, ft.

From previous studies elastic constant can be calculated from ultimate resistance by taking 1.5 percent of the total depth as yield displacement. Taking 1.5 percent of the total depth as the yield displacement, the elastic constant can be written as: (Liangchaun, 1978)

$$K = \frac{U}{0.015(H+D) \times 144}$$

Or

$$K = 0.2315\gamma(H+D)\tan^2\left(45 + \frac{\theta}{2}\right)$$

Where,

Κ	- Elastic constant, lbs. /inch
θ	- Angle pipe makes with soil while displacement takes place
γ	- Density of backfill soil, lbs/ft ³
D	- Outside diameter of pipe (1-3 times the diameter), ft
Н	- Depth of soil cover to top of pipe, ft.

Elastic constant K is a constant value or coefficient that expresses the degree to which a material possess elasticity. In an elastic material that has been subjected to strain below its elastic limit, the elastic constant is the ratio of the unit stress to the corresponding unit strain.

3.2.3 Soil End Force

The soil end force acting on the vertical entry leg can be calculated aby adding the side shears to the lateral force. (Liangchaun, 1978)

$$Q = \frac{\gamma}{2} (H+D)^2 \tan^2 \left(45 + \frac{\theta}{2}\right) D + \frac{(H+D)^3 \gamma K_o tan\theta}{3 \tan\left(45 + \frac{\theta}{2}\right)}$$

Here, K_o is the coefficient of lateral soil pressure is found out by,

$$K_o = 1 - sin\theta$$

3.2.4 Longitudinal Pipe Movement

One of the major problems that buried pipelines face is the flexibility issues. The flexibility problem originates from the expansion of the pipe. Therefore, the first step of flexibility analysis is to determine longitude movement.

When considering a pipeline pump station or a pigging station. Point A is a pig launcher. When the line is heated up, the end of pipe B will start to move. The movement produces a friction force (f), simultaneously an end resistance (Q) develops because of soil passive force and pipe stiffness. The moving portion of the pipe will extend gradually downstream to a point C where the movement stops.

As the moving portion extends, the friction force also increases, and when the moving boundary reaches a point C, the friction force plus end force developed is enough to suppress the expansion completely. Point C is sometimes called virtual anchor point and the moving length (L) is called the active length.

At the scraper barrel end, the stress is tensile and equal to the pressure stress. The tensile stress is reduced gradually due to end force and friction force, and then eventually becomes compressive if the line is hot enough. Finally, at C, the compressive stress reaches maximum and stays the same for the entire fully restrained portion.

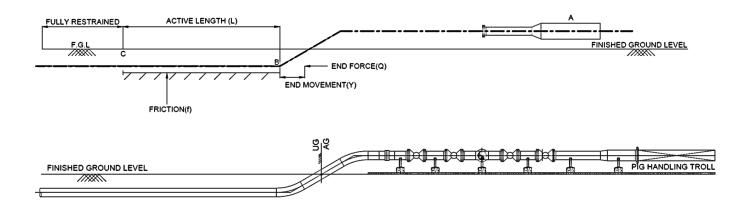


Figure 15: Force distribution during longitudinal movement

The active length of the line can be determined by equating friction force plus end force with the required anchor force. The active length is given by the following formulae: (Liangchaun, 1978)

$$fL + Q = F$$
$$Or$$
$$L = \frac{F - Q}{f}$$

Where,

L	- Active length, inches
F	- Anchor force or expansion force, lbs
Q	- End resistance force, lbs.
f	- Soil friction force, lbs/in.

Once the active length is determined, the end movement or the end displacement (y) can be calculated by multiplying the average expansion rate with the length. The rate of expansion at point C is zero, and the rate of expansion at the end B is equivalent to the pull of the potential expansion force in this case anchor force(F) minus the end force(Q)

$$y = \frac{1}{2} \left(0.0 + \frac{1}{AE} (f - Q) \right) L$$

Applying $L = \frac{F-Q}{f}$ in equation:

$$y = \frac{1}{2AEf}(F - Q)^2$$

Where,

у	- End delefction/movement, inches
F	- Anchor force or expansion force, lbs
Q	- End resistance force, lbs.
f	- Soil friction force, lbs/in.

3.2.5 Lateral Pipe Movement

The lateral pipe movement in a buried pipeline is caused by the longitudinal movement of a pipe which connected in the perpendicular direction. (Bhattacharya, 2012)

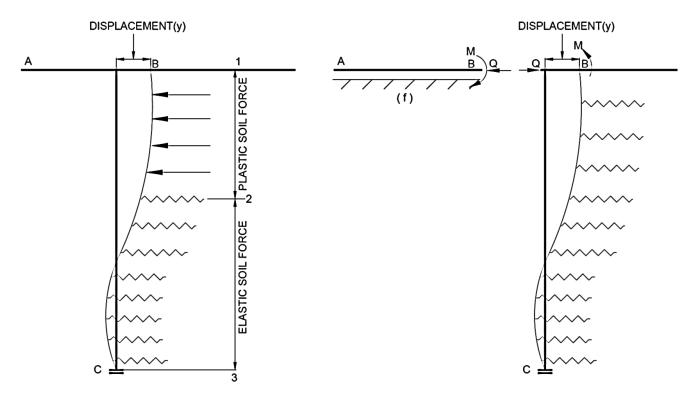


Figure 16: Lateral movement of buried pipeline.

Considering a long main line pipe making a 90 degree turn to enter a pigging station or pump station. The expansion of the pipe AB will cause the station pipe BC to move in the lateral direction. The lateral movement at corner B is y inches. This decreases gradually towards a point C where displacement is virtually zero.

Due to the large movement, the soil in the region 1-2 is in the plastic stage which offers a contact passive force. The soil which is in the rejoin 2-3 is still in the static range that offers a resisting force which is proportional to the local displacement. The extent of the region 1-2 depends on the magnitude of the end movement.

The elastic plastic soil force analysis generally requires a FEA software. However in the piping system, the system can be conventionally treated as a guided cantilever elastic system which can be easily analyzed. (Super Civil, 2010)

In figure 15 the pipe AB is considered to be guided, allowing no rotation at the corner B. The soil force is considered to be completely elastic, offering a resistance which his proportional to the local displacement. For the analysis, the system is cut into two free bodies. The long pipe

AB is exactly as the longitudinal pipe movement system, except a moment M exists. Now since the end movement does not affect the longitudinal movement, the displacement for the first section of cantilever AB is same as the displacement of the longitudinal pipe movement.

$$y = \frac{1}{2AEf}(F - Q)^2$$

Here, since there are two unknowns (y and Q) we get another equation from the second section of the cantilever BC. Leg BC actually represents one-half of an infinite beam on elastic foundation that is loaded with a concentrated force. The situation in leg BC is a beam on elastic foundation problem. The case is not quite the same as an ordinary problem where elastic modulus changes with depth and the end, is free to rotate.

The displacement for the beam BC can be therefore found out by:

$$y = \frac{QB}{K}$$

And the moment M is given by:

$$M = \frac{Q}{2\beta}$$

Where.

Y	- End displacement, inches
Q	- End force, lbs
Κ	- Soil elastic constant, lbs.in ²
Ε	- Modulus of elasticity of pipe, psi
Ι	- Moment of intertia of pipe, in ⁴
М	- End bending movement, in-lbs
β	- Constant $\sqrt{\frac{K}{4EI}}$, here <i>I</i> is moment of inertia

Once the moment is calculated, the bending stress can be found out by the formulae:

Bending stress
$$=$$
 $\frac{M}{Z}$

Here Z is the section modulus (inches³) given by:

$$Z = \frac{0.0982(D_o^4 - D_i^4)}{D_o}$$

From the two equations of end displacement we have:

$$y = \frac{1}{2AEf} (F - Q)^2 \qquad \& \qquad y = \frac{QB}{K}$$

Equating both the equations we get:

$$Q = C - \sqrt{C^2 - F^2}$$

Where

C is a constant represented to simplify the formula:

$$C = F + \frac{AEf\beta}{K}$$

Once the end force is determined, the end displacement as well as the moment can be calculated.

CHAPTER 4

4. EXPERIMENTAL AND CALCULATIONS

The various soil forces and well as the soil pipe interaction analysis for a gas pipeline was investigated. The pipeline is a gas pipeline for a city gas distribution project in Kota, Gujarat. The problem of this project was that the surveyed soil data differed from the actual soil properties on the actual site. During construction it was found out that the soil was in fact hard rock which hindered construction methods such as trenching. The pipeline route had to be blasted such that the pipe can be laid. This caused delay in project schedule and exceeded project costs to a great amount. This report will look into the stress and soil pipe interaction analysis of the Kota pipeline and mainly compare how these values would differ for different soil types as stated by the surveyor.

Details of the pipeline:

Wall thickness	- 6.4mm or 0.251969 inches
Class and Design Factor	- Class 4 having design factor of 0.5
Corrosion allowance	- 0.5mm
SMYS	- 414 N/mm ² or 60045.623 psi
Length	- 12400m or 7.7km
Operating pressure	- 19 kg/cm ² or 270.24 psi
Design Pressure	- 49 kg/cm ² or 696.94 psi
Available Gas Pressure	- 52 to 53 kg/cm ²
Operating temperature	- 23°C or 73.4°F
Design temperature	- 60°C or 140°F

Material	- API 5L X42 (42000 psi)
Operating Pressure	- 16 to 19kg/cm ²
Soil Temperature	- 25°C (1m below ground level)
Pipeline roughness	- 45 microns
Design flow	- 0.984 MMSCFD

4.1 Soil and pipe force calculations

Calculations done considering: Soil type – Slit, Angle (θ) of internal friction 35°, Dry density (γ) as 90lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.4 lb/ft³.

1. Hoop stress

$$S_h = \frac{PD}{2t}$$

$$S_h = \frac{696.94 \times 8}{2 \times 0.251969}$$

$$\therefore S_h = 11603.9 \, psi$$

2. Compressive longitudinal stress at fully restrained portion

$$S_L = -E\alpha(T_2 - T_1) + (0.3S_h)$$

Modulus of elasticity of the pipe (E), depends on the material and varies to the load supplied accordingly, however in for onshore pipeline application having X42 steel the modulus is taken as:

$$E = 29 \times 10^6 \, psi$$

The linear co-efficient of thermal expansion (α). When an object is heated or cooled, its length changes by an amount proportional to the original length and the change in temperature.

$$\alpha \text{ of steel} = 6.7 \times 10^{-6} \text{ in/in}^{\circ}\text{F}$$

Therefore applying all these values to find the longitudinal stress:

$$S_L = -E\alpha(T_2 - T_1) + (0.3S_h)$$
$$S_L = -((29 \times 10^6) \times (6.7 \times 10^{-6}) \times (140 - 77)) + (0.3 \times 11063.9)$$
$$\therefore S_L = -8921.73$$

3. Equivalent tensile stress at the fully restrained portions.

$$S_e = \sqrt{(S_h - S_L)^2 + 4r^2}$$

$$S_e = 19985.63 \, psi$$

Now the *SMYS* = 60045.623 *psi*

$$S_e < 0.9 \times SMYS$$

Stress checks are usually done to determine the wall thickness calculations. This is not our scope, as the wall thickness has already been determined.

4. Anchor Force

$$F = A(0.5S_h - S_L)$$

Or
$$F = A((0.5 - v)S_h + E\alpha(T_2 - T_1))$$

$$F = \pi Dt \big(0.2S_h + E\alpha (T_2 - T_1) \big)$$

 $F = 3.14 \times 8 \times 0.251969 \times ((0.2 \times 11063.9) + (29 \times 10^{6}) \times (6.7 \times 10^{-6}) \times (140 - 77))$

$$F = 91530.40lbs$$

5. Thermal Expansion

Net longitudinal expansion, Δ

$$\Delta = \alpha (T_{2-}T_1)L + \left(\frac{0.5S_hL}{E} - \frac{0.3S_hL}{E}\right)$$
$$\Delta = \alpha (T_{2-}T_1)L + \left(\frac{0.2S_hL}{E}\right)$$

Strain is given by, $\varepsilon = \Delta/L$

$$\varepsilon = \alpha(T_{2-}T_1) + \left(\frac{0.2S_h}{E}\right)$$

Therefore the thermal expansion,

$$\varepsilon_t = \alpha(T_{2-}T_1)$$
$$\varepsilon_t = 6.7 \times 10^{-6} (140 - 77)$$
$$\varepsilon_t = 4.221 \times 10^{-4} in/in$$

Inches/inches means expansion of 4.22×10^{-4} inches per 1 inch, however it is more feasible to calculate per 100 feet of pipe. (Engineering toolbox, 2014)

$$\varepsilon_t = 5.0652 \times 10^{-3} in/feet$$

 $\varepsilon_t = 0.50652 in/100 feet$

The pressure expansion is given by:

$$\varepsilon_p = \left(\frac{0.2S_h}{E}\right)$$

$$\varepsilon_p = \left(\frac{0.2 \times 11063.9}{29 \times 10^6}\right)$$

$$\varepsilon_p = 7.630 \times 10^5 in/in$$

Similarly we calculate the pressure expansion per 100 feet of pipe.

$$\varepsilon_p = 9.156 \times 10^{-4} in/ft$$

$$\varepsilon_p = 0.09156 in/100 ft$$

Therefore the total expansion:

$$\varepsilon = \varepsilon_t + \varepsilon_p$$

$$\varepsilon = 0.50652 \frac{in}{100 ft \, pipe} + 0.09156 \frac{in}{100 ft \, pipe}$$

$$\therefore \varepsilon = 0.598 \frac{in}{100 ft \, pipe}$$

4.2 Soil- Pipe Interaction Calculations:

1. Axial friction force :

$$f = \frac{\mu(2\gamma DH + W_p)}{12}$$

$$W_p = W_{steel} + W_{content}$$

 $W_{steel} = material of the steel pipe$

$$W_{steel} = \rho_{steel} \times Area \times gravity$$

$$\rho_{steel} = 7850 \frac{kg}{m^3} \text{ or } 490.06 \frac{lb}{ft^3}$$

$$gravity = 9.81 \frac{m}{second} \quad or \ 32.174 \frac{ft}{second}$$

$$W_{steel} = 490.06 \times \left(\pi \left(\frac{8}{12 \times 2}\right)^2 - \pi \left(\frac{8 - 2(0.2519)}{12 \times 2}\right)^2\right) \times 32.174$$

$$W_{steel} = 671.55 \ lb/second$$

$$\therefore W_p = W_s + W_c = 671.55 \ lb/second$$

Now finding soil friction force:

$$f = \frac{0.4\left(\left(2 \times 90 \times \frac{8}{12} \times 4\right) + 671.55\right)}{12}$$

f = 38.385 lbs/inches

2. Soil end force (longitudinal)

$$Q = \frac{\gamma}{2} (H+D)^2 \tan^2 \left(45 + \frac{\theta}{2}\right) D + \frac{(H+D)^3 \gamma K_o tan\theta}{3 \tan\left(45 + \frac{\theta}{2}\right)}$$

$$K_o = 1 - sin\theta$$

Considering γ as 90lbs/ft 3 and angle of internal friction as 35°

$$Q = \frac{90}{2} \left(4 + \frac{8}{12}\right)^2 \tan^2\left(45 + \frac{35}{2}\right) \left(\frac{8}{12}\right) + \frac{\left(4 + \frac{8}{12}\right)^3 90(0.426 \times tan35)}{3\tan\left(45 + \frac{35}{2}\right)}$$

$Q = 2884.341369 \, lbs$

3. Active length

$$L = \frac{F - Q}{f}$$

$$L = \frac{91530.40lbs - 2884.341369lbs}{38.385lb/in}$$

L = 2309.393217 inches or 192.4494 feet

4. Longitudinal movement

$$y = \frac{1}{2AEf}(F-Q)^2$$
$$y = \frac{1}{2} \times \frac{1}{\pi(8 - 0.251969)0.251969} \times \frac{1}{29 \times 10^6} \times \frac{1}{38.385} \times (91530.40 - 2884.3413)^2$$

y = 0.5755146 inches

Therefore there will be 0.5755146 inches of deflection at the pipe overheads.

5. Lateral soil forces

$$U = \frac{1}{2}\gamma(H+D)^2\tan^2\left(45 + \frac{\theta}{2}\right)$$

$$U = \frac{1}{2}90\left(4 + \frac{8}{12}\right)^2 \tan^2\left(45 + \frac{35}{2}\right)$$

$$U = 3616.368885 \ lbs/ft$$

6. Elastic constant

$$K = 0.2315\gamma(H+D)\tan^{2}\left(45 + \frac{\theta}{2}\right)$$
$$K = 0.2315 \times 90\left(4 + \frac{8}{12}\right)\tan^{2}\left(45 + \frac{35}{2}\right)$$
$$K = 358.7954 \ lb/in^{2}$$

7. End force (lateral)

Finding constant values:

$$\beta = \sqrt{\frac{K}{4EI}}$$

$$I = \frac{\pi (D_o^4 - D_i^4)}{65}$$

$$I = 0.491(8^4 - 7.490602^4) = 53.8656 in^4$$

Value in accordance with ASME B31.4:

$$I = 46.1 in^{4}$$
$$\therefore \beta = \sqrt{\frac{358.7954}{4 \times 29 \times 10^{6} \times 46.1}}$$

$$\beta = 2.590 \times 10^{-4} in^{-1}$$

$$C = F + \frac{AEf\beta}{K}$$

 $C = 91530.40 + \frac{(2.590 \times 10^{-4}) \times (\pi (8 - 0.251969) \times 0.251969) \times (29 \times 10^{6}) \times (38.385)}{358.7954}$

C = 91530.40 + 6326.3610

$\therefore C = 97856.76106 \, lbs$

Applying values to determine the lateral end force:

$$Q = C - \sqrt{C^2 - F^2}$$

$$Q = 97856.76106 - \sqrt{97856.76106^2 - 91530.40^2}$$

$$\therefore Q = 63242.72401 \ lbs$$

8. Lateral movement

$$y = \frac{QB}{K}$$

$$y = \frac{63242.72401 \times (2.590 \times 10^{-4})}{358.7954}$$

$$y = 0.0456523$$
 inches

Yield displacement check:

yeild displacement = 0.015(H + D) = 0.07ft or 0.84 inches

lateral displacement (y) < yeild displacement

9. End moment (*M*)

$$M = \frac{Q}{2\beta}$$

$$M = \frac{63242.72401}{2 \times (2.590 \times 10^{-4})}$$

 $\therefore M = 122090200.8 in.lbs$

10. Bending stress

Bending Stress =
$$\frac{M}{Z}$$

$$Z = \frac{0.0982(8^4 - 7.49^4)}{8}$$

$$Z = 11.5 inches^3$$

$$Bending Stress = \frac{122090200.8}{11.5}$$

Bending Stress = 10616539.2 psi

Stress check:

In the same way soil pipe forces as well as the soil pipe interaction analysis was done with different soil types like clay, slit, sand, concrete and rock to see how this pipeline would behave in all the various ground properties.

CHAPTER 5 5. RESULTS AND DISCUSSION

The soil pipe forces as well as the soil pipe interaction analysis was done with different soil types like clay, slit, sand, concrete and rock to see how this pipeline would behave in all the various ground properties.

1. Ground type – Clay

Dry density (γ) as 77.4106 lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.3 lb/ft³.

2. Ground type – Slit

Dry density (γ) as 82.40485 lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.3 lb/ft³.

3. Ground type – Sand

Dry density (γ) as 92.38335 lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.4 lb/ft³.

4. Ground type – Concrete

Dry density (γ) as 149.8271 lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.45 lb/ft³.

5. Ground type – Rock

Dry density (γ) as 225 lbs/ft, Backfill Height (*H*) of 4 feet, coefficient of friction (μ) as 0.6 lb/ft³.

5.1 Tabulated Results 5.1.1 Ground type – Clay

Table 4: Tabulated results of clay ground profile

Clay Property	θ	Soil friction force (f)	Dry Densit y(γ)		End Force		Active La	8 ()	Long Movem ent (y)	Lateral Soil Force (U)	Elastic Con (K)	Beta (β)	C	End force (Q)	End displaceme nt(y)	End Moment (M)	Bend Stress (S)
				Passive Soil force	Side shears	Q	inches	feet	inches	lb/ft	lb/in ²	in ⁻¹	lbs	lbs	inches	in-lbs	psi
Loose consistency/ compactness	25	27.11023 308	77.4106	1384.580 072	449.8031 014	1834.383 173	3308.567 158	275.713 93	0.834251 192	2076.870 107	206.0551 842	0.000196 355	96125.33 857	66760.9 935	0.063618287	17000044 9.2	1475565 0.61
Loose consistency/ compactness	27	27.11023 308	77.4106	1496.422 09	447.0796 652	1943.501 755	3304.542 162	275.378 513	0.832222 631	2244.633 134	222.6996 731	0.000204 132	95950.29 274	67164.1 377	0.061564252	16451166 7.5	1427923 6.89
Loose consistency/ compactness	29	27.11023 308	77.4106	1619.555 252	441.1311 468	2060.686 399	3300.219 638	275.018 303	0.830046 869	2429.332 878	241.0245 263	0.000212 364	95778.95 203	67569.1 719	0.05953453	15908785 5.7	1380846 2.42
Medium consistency/ compactness	31	27.11023 308	77.4106	1755.531 575	432.3375 463	2187.869 122	3295.528 32	274.627 36	0.827688 695	2633.297 363	261.2607 17	0.000221 1	95611.09 884	67976.5 866	0.057527202	15372388 3.2	1334288 1.86
Medium consistency/ compactness	33	27.11023 308	77.4106	1906.180 173	421.0533 037	2327.233 477	3290.387 665	274.198 972	0.825108 505	2859.270 259	283.6804 564	0.000230 391	95446.52 854	68386.8 934	0.055540415	14841480 2.2	1288206 5.76
Medium consistency/ compactness	35	27.11023 308	77.4106	2073.668 78	407.6093 85	2481.278 165	3284.705 504	273.725 459	0.822261 211	3110.503 169	308.6063 502	0.000240 3	95285.04 832	68800.6 288	0.053572379	14315582 6.6	1242559 8.69
Medium consistency /compactness	37	27.11023 308	77.4106	2260.581 832	392.3151 274	2652.896 959	3278.375 098	273.197 925	0.819094 881	3390.872 748	336.4230 176	0.000250 896	95126.47 627	69218.3 591	0.051621355	13794231 1.7	1197307 7.51
Medium consistency/ compactness	39	27.11023 308	77.4106	2470.020 385	375.4598 731	2845.480 258	3271.271 386	272.605 949	0.815549 032	3705.030 577	367.5919 622	0.000262 261	94970.64 044	69640.6 86	0.049685652	13276973 4.9	1152410 9.66
Dense consistency/ compactness	41	27.11023 308	77.4106	2705.731 144	357.3144 164	3063.045 561	3263.246 176	271.937 181	0.811552 468	4058.596 717	402.6707 742	0.000274 49	94817.37 805	70068.2 523	0.047763614	12763367 7	1107831 1.57
Dense consistency/ compactness	43	27.11023 308	77.4106	2972.274 73	338.1322 884	3310.407 019	3254.121 892	271.176 824	0.807020 488	4458.412 095	442.3381 715	0.000287 692	94666.53 474	70501.7 495	0.045853621	12252980 3.2	1063530 6.98
Dense consistency /compactness	45	27.11023 308	77.4106	3275.247 407	318.1508 979	3593.398 305	3243.683 351	270.306 946	0.801851 287	4912.871 111	487.4269 981	0.000301 999	94517.96 389	70941.9 264	0.043954075	11745384 4.9	1019472 5.4
Dense consistency/ compactness	47	27.11023 308	77.4106	3621.576 636	297.5925 445	3919.169 181	3231.666 823	269.305 569	0.795921 226	5432.364 954	538.9682 087	0.000317 565	94371.52 598	71389.5 991	0.042063395	11240158 1	9756200. 432
Dense consistency Dense	49 51	27.11023 308 27.11023	77.4106	4019.919 919 4481.210	276.6653 201 255.5639	4296.585 239 4736.774	3217.745 288 3201.508	268.145 441 266.792	0.789078 578 0.781135	6029.879 879 6721.815	598.2502 251 666.9001	0.000334 574 0.000353	94227.08 806 94084.52	71845.6 634 72311.1	0.040180013	10736881 8.7 10235137	9319368. 162 8883865.
consistency/comp actness	51	308	77.4100	357	112	268	282	357	16	536	271	249	318	094	0.030302304	3.6	393

5.1.2 Ground type – Slit

Soil Property	θ	Soil friction force(f)	Dry Density (γ)		End Force(Act Lengt	h (L)	Longitudin al Movement (y)	Lateral Soil Force (U)	Elastic Constan t(K)	Bet a (β)	С	End force (Q)	End displace ment(y)	End Mome nt(M)	Bendin g stress (S)
				Passive Soil force	Side shears	Q	inche s	feet	inches	lb/ft	lb/in ²	in ⁻¹	lbs	lbs	inches	in-lbs	psi
Loose consistency/ compactness	25	27.77613308	82.40485	1473.908135	478.822 7594	1952.731	3224. 98739 6	268. 748 9	0.812103726	2210.8622 03	219.34911 43	0.00 020 3	960 93.3 1	66833. 9778	0.0617277 32	1649485 18.2	1431715 4.53
Loose consistency/ compactness	27	27.77613308	82.40485	1592.965793	475.923 617	2068.889	3220. 80544 2	268. 400 5	0.809998925	2389.4486 9	237.06744 5	0.00 021 1	959 19.4 9	67236. 18331	0.0597335 12	1596195 72.7	1385461 4.24
Loose consistency/ compactness	29	27.77613308	82.40485	1724.043059	469.591 3219	2193.634	3216. 31435 7	268. 026 2	0.807741578	2586.0645 88	256.57455 09	0.00 021 9	957 49.3 4	67640. 26485	0.0577629 63	1543538 83.8	1339756 4.47
Medium consistency/ compactness	31	27.77613308	82.40485	1868.792079	460.230 3904	2329.022	3211. 44009 7	267. 62	0.805295201	2803.1881 19	278.11630 7	0.00 022 8	955 82.6 6	68046. 71175	0.0558142 21	1491464 66	1294557 2.51
Medium consistency/ compactness	33	27.77613308	82.40485	2029.159976	448.218 1295	2477.378	3206. 09897 8	267. 174 9	0.802618769	3043.7399 64	301.98248 64	0.00 023 8	954 19.2 3	68456. 03418	0.0538854 87	1439925 12.1	1249822 1.08
Medium consistency/ compactness	35	27.77613308	82.40485	2207.454337	433.906 8581	2641.361	3200. 19523 7	266. 682 9	0.799665591	3311.1815 06	328.51650 8	0.00 024 8	952 58.8 8	68868. 76728	0.0519750 2	1388873 72.3	1205510 6.61
Medium consistency/ compactness	37	27.77613308	82.40485	2406.426339	417.625 8707	2824.052	3193. 61797 1	266. 134 8	0.796381911	3609.6395 09	358.12780 55	0.00 025 9	951 01.4 1	69285. 47584	0.0500811 32	1338265 35.2	1161583 7.51
Medium consistency/ compactness	39	27.77613308	82.40485	2629.377104	399.683 1768	3029.06	3186. 23724 4	265. 519 8	0.79270515	3944.0656 57	391.30765 69	0.00 027 1	949 46.6 6	69706. 75969	0.0482021 79	1288056 08.3	1118003 2.53
Dense consistency/ compactness	41	27.77613308	82.40485	2880.295064	380.367 0413	3260.662	3177. 89908 4	264. 824 9	0.788561671	4320.4425 96	428.64962 62	0.00 028 3	947 94.4 7	70133. 25988	0.0463365 56	1238203 00	1074731 9.16
Dense consistency/ compactness	43	27.77613308	82.40485	3164.035071	359.947 3523	3523.982	3168. 41899 2	264. 034 9	0.783863921	4746.0526 07	470.87621 94	0.00 029 7	946 44.6 8	70565. 6659	0.0444826 88	1188664 01.7	1031733 2.1
Dense consistency/ compactness	45	27.77613308	82.40485	3486.554442	338.676 8352	3825.231	3157. 57339 1	263. 131 1	0.778506722	5229.8316 63	518.87401 29	0.00 031 2	944 97.1 4	71004. 72425	0.0426390 22	1139397 69.3	9889711. 668
Dense consistency/ compactness	47	27.77613308	82.40485	3855.227572	316.792 1317	4172.02	3145. 08826 8	262. 090 7	0.772362425	5782.8413 58	573.74047 47	0.00 032 8	943 51.7 2	71451. 24854	0.0408040 27	1090363 05.7	9464102. 23
Dense consistency/ compactness	49	27.77613308	82.40485	4279.270513	294.514 759	4573.785	3130. 62385 1	260. 885 3	0.765274495	6418.9057 69	636.84715 1	0.00 034 5	942 08.2 9	71906. 13173	0.0389761 8	1041519 41.9	9040150. 609
Dense consistency/ compactness	51	27.77613308	82.40485	4770.32173	272.051 964	5042.374	3113. 75366 9	259. 479 5	0.757048956	7155.4825 95	709.92609 46	0.00 036 4	940 66.7 2	72370. 36091	0.0371539 61	9928261 7.73	8617504. 396

Table 5: Tabulated results of Slit ground profile

5.1.3 Ground type – Sand

Soil Property	θ	Soil friction force(f)	Dry Densit y(γ)	Soil E	End Force	e(Q)		Length L)	Longitudinal Movement (y)	Lateral Soil Force (U)	Elastic Constan t(K)	Beta (β)	C	End force (Q)	End displa cemen t(y)	End Mom ent (M)	Bendin g stress (S)
				Passive Soil force	Side Shear s	Q	inches	feet	inches	lb/ft	lb/in ²	in ⁻¹	lbs	lbs	inches	in-lbs	psi
Loose consistency/ compactness	25	38.81057 744	92.393 35	1652.564 263	536.86 20754	2189.4 26339	2301.97 512	191.831 26	0.578142679	2478.8463 95	245.93697 45	0.0002 14518	97551. 50497	63810. 13322	0.05565 814	14872 9387.4	1290937 1.04
Loose consistency /compactness	27	38.81057 744	92.393 35	1786.053 2	533.61 15207	2319.6 64721	2298.61 9375	191.551 6146	0.576458313	2679.0798 01	265.80298 88	0.0002 23013	97322. 1287	64249. 77196	0.05390 6684	14404 9153.8	1250313 7.45
Loose consistency/ compactness	29	38.81057 744	92.393 35	1933.018 672	526.51 16721	2459.5 30344	2295.01 5574	191.251 2978	0.574652174	2899.5280 09	287.67460 03	0.0002 32007	97097. 60754	64691. 90688	0.05217 3521	13941 7806.1	1210114 7.06
Medium consistency /compactness	31	38.81057 744	92.393 35	2095.313 087	516.01 60784	2611.3 29166	2291.10 4299	190.925 3583	0.572695144	3142.9696 31	311.82748 7	0.0002 41551	96877. 65636	65137. 0775	0.05045 707	13483 1114	1170303 2.65
Medium consistency /compactness	33	38.81057 744	92.393 35	2275.119 581	502.54 7781	2777.6 67362	2286.81 8401	190.568 2	0.570554502	3412.6793 72	338.58654 63	0.0002 51701	96662. 00699	65585. 84827	0.04875 5795	13028 4977.4	1130843 8.39
Medium consistency/ compactness	35	38.81057 744	92.393 35	2475.025 453	486.50 18043	2961.5 27257	2282.08 1035	190.173 4196	0.568193032	3712.5381 8	368.33682 37	0.0002 62527	96450. 40681	66038. 81331	0.04706 8206	12577 5410.1	1091701 8.25
Medium consistency/ compactness	37	38.81057 744	92.393 35	2698.115 354	468.24 73573	3166.3 62711	2276.80 321	189.733 6008	0.565567923	4047.1730 3	401.53738 14	0.0002 74103	96242. 61743	66496. 60165	0.04539 2846	12129 8522.4	1052843 4.63
Medium consistency /compactness	39	38.81057 744	92.393 35	2948.090 544	448.12 97841	3396.2 20329	2270.88 0659	189.240 0549	0.562629375	4422.1358 17	438.73904 64	0.0002 86519	96038. 41353	66959. 88334	0.04372 829	11685 0505.5	1014235 6.92
Dense consistency /compactness	41	38.81057 744	92.393 35	3229.422 904	426.47 2291	3655.8 95195	2264.18 9832	188.682 486	0.559318844	4844.1343 56	480.60733	0.0002 99879	95837. 58181	67429. 37645	0.04207 3138	11242 7615.4	9758460 .161
Dense consistency /compactness	43	38.81057 744	92.393 35	3547.555 754	403.57 748	3951.1 33234	2256.58 2678	188.048 5565	0.555566794	5321.3336 31	527.95231 52	0.0003 14303	95639. 92	67905. 85534	0.04042 6005	10802 6156.7	9376423 .606
Dense consistency /compactness	45	38.81057 744	92.393 35	3909.168 512	379.72 87098	4288.8 97222	2247.87 9793	187.323 3161	0.551289787	5863.7527 68	581.76804 25	0.0003 29933	95445. 23596	68390. 1604	0.03878 5522	10364 2467.2	8995929 .366
Dense consistency/ compactness	47	38.81057 744	92.393 35	4322.529 443	355.19 13061	4677.7 20749	2237.86 1299	186.488 4416	0.54638669	6483.7941 64	643.28500 67	0.0003 46939	95253. 3469	68883. 20959	0.03715 0325	99272 900.48	8616660 .96
Dense consistency/ compactness	49	38.81057 744	92.393 35	4797.971 7	330.21 36368	5128.1 85337	2226.25 4551	185.521 2126	0.54073368	7196.9575 5	714.04100 26	0.0003 65521	95064. 07858	69386. 01242	0.03551 9047	94913 809.5	8238301 .823
Dense consistency/ compactness	51	38.81057 744	92.393 35	5348.544 475	305.02 80697	5653.5 72545	2212.71 7334	184.393 1112	0.53417758	8022.8167 13	795.97802 96	0.0003 85924	94877. 26464	69899. 68688	0.03389 0318	90561 527.86	7860533 .719

Table 6: Tabulated results of Sand ground profile

5.1. 4 Ground type – Concrete

Soil Property	θ	Soil friction force(f)	Dry Densit y(γ)	Soil	End Force	e(Q)		Length L)	Long Mov (y)	Lateral Soil Force (U)	Elastic Cons (K)	Beta (β)	С	End force (Q)	End displacem ent(y)	End Momen t(M)	Bendin g stress (S)
				Passive Soil force	Side Shears	Q	inches	feet	inches	lb/ft	lb/in ²	In ⁻¹	lbs	lbs	inches	in-lbs	psi
Loose consistency/ compactness	25	55.1486 4963	149.827 1	2679.83 4762	870.587 4163	3550.42 2179	1595.32 4426	132.943 7022	0.39456 321	4019.75 2143	398.816 8377	0.00027 3173	98249.1 1273	62540.9 5963	0.04283795 7	1144713 61.7	9935852 .668
Loose consistency/ compactness	27	55.1486 4963	149.827 1	2896.30 3375	865.316 2448	3761.61 962	1591.49 4823	132.624 5686	0.39267 1172	4344.45 5063	431.032 0059	0.00028 3992	97993.1 6079	62995.3 9506	0.04150543 8	1109106 10.3	9626787 .582
Loose consistency/ compactness	29	55.1486 4963	149.827 1	3134.62 5835	853.802 9733	3988.42 8809	1587.38 2135	132.281 8446	0.39064 4339	4701.93 8753	466.499 4949	0.00029 5445	97742.6 2646	63452.6 1228	0.04018600 8	1073848 38.5	9320758 .645
Medium consistency/ compactness	31	55.1486 4963	149.827 1	3397.80 6049	836.783 0864	4234.58 9135	1582.91 8557	131.909 8797	0.38845 0513	5096.70 9073	505.666 3502	0.00030 7598	97497.1 916	63913.1 7137	0.03887848 2	1038908 72	9017490 .337
Medium consistency /compactness	33	55.1486 4963	149.827 1	3689.38 4236	814.942 5975	4504.32 6834	1578.02 7454	131.502 2878	0.38605 3654	5534.07 6355	549.059 4326	0.00032 0524	97256.5 5697	64377.6 592	0.03758170 3	1004256 27.5	8716715 .028
Medium consistency /compactness	35	55.1486 4963	149.827 1	4013.55 602	788.922 0867	4802.47 8106	1572.62 1134	131.051 7611	0.38341 2947	6020.33 4029	597.303 1405	0.00033 4309	97020.4 4066	64846.6 9436	0.03629454 8	9698609 9.59	8418171 .868
Medium consistency/ compactness	37	55.1486 4963	149.827 1	4375.32 3537	759.320 2718	5134.64 3809	1566.59 8036	130.549 8363	0.38048 1648	6562.98 5305	651.141 8992	0.00034 9051	96788.5 7667	65320.9 3267	0.03501591 7	9356934 8.79	8121605 .704
Medium consistency/ compactness	39	55.1486 4963	149.827 1	4780.68 8835	726.697 1701	5507.38 6005	1559.83 9172	129.986 5977	0.37720 5663	7171.03 3253	711.468 942	0.00036 4862	96560.7 1358	65801.0 7359	0.03374473	9017248 8.91	7826766 .027
Dense consistency/ compactness	41	55.1486 4963	149.827 1	5236.90 3612	691.576 9003	5928.48 0512	1552.20 3546	129.350 2955	0.37352 1754	7855.35 5418	779.363 4768	0.00038 1875	96336.6 1337	66287.8 6761	0.03247992 2	8679267 5.16	7533405 .916
Dense consistency/ compactness	43	55.1486 4963	149.827 1	5752.79 4879	654.450 1682	6407.24 5047	1543.52 2199	128.626 8499	0.36935 5286	8629.19 2318	856.139 1521	0.00040 0242	96116.0 5035	66782.1 2495	0.03122043 9	8342709 1.95	7241280 .982
Dense consistency /compactness	45	55.1486 4963	149.827 1	6339.19 4126	615.776 475	6954.97 0601	1533.59 0396	127.799 1996	0.36461 734	9508.79 1189	943.407 9258	0.00042 0146	95898.8 101	67284.7 2573	0.02996523 4	8007294 0.45	6950148 .295
Dense consistency /compactness	47	55.1486 4963	149.827 1	7009.50 9354	575.986 0784	7585.49 5433	1522.15 7209	126.846 434	0.35920 1032	10514.2 6403	1043.16 5196	0.00044 1802	95684.6 8866	67796.6 3228	0.02871326 2	7672742 5.77	6659765 .264
Dense consistency/ compactness	49	55.1486 4963	149.827 1	7780.49 7034	535.481 7375	8315.97 8772	1508.91 1493	125.742 6244	0.35297 6743	11670.7 4555	1157.90 4684	0.00046 5465	95473.4 9159	68318.9 0373	0.02746347 2	7338774 3.51	6369888 .473
Dense consistency/com pactness	51	55.1486 4963	149.827 1	8673.31 8025	494.640 2648	9167.95 829	1493.46 271	124.455 2258	0.34578 5935	13009.9 7704	1290.77 5579	0.00049 1447	95265.0 3327	68852.7 14	0.02621480 6	7005106 5.35	6080272 .432

Table 7: Tabulated results of Concrete ground profile

5.1.5 Ground type – Rock

Rock Property	θ	Soil friction force(f)	Dry Densit y(γ)		l End Force			ength (L)	Longitu dinal Moveme nt (y)	Lateral Soil Force (U)	Elastic Constan t(K)	Beta (β)	С	End force (Q)	End displacem ent(y)	End Momen t(M)	Bendin g stress (S)
				Passive Soil force	Side Shears	Q	inches	feet	inches	lb/ft	lb/in ²	In ⁻¹	lbs	lbs	inches	in-lbs	psi
Loose consistency/com pactness	25	93.577 6395	225	4024.39 0925	1307.38 8107	5331.77 9032	921.145 6009	76.7621 3341	0.22320 9321	6036.58 6387	598.915 6065	0.00033 476	100833. 4857	58530.1 0653	0.0327150 4	8742095 5.78	7587939 .238
Loose consistency/com pactness	27	93.577 6395	225	4349.46 855	1299.47 2226	5648.94 0776	917.756 311	76.4796 9259	0.22156 9777	6524.20 2826	647.294 1232	0.00034 8018	100479. 081	59027.5 4592	0.0317361 95	8480529 0.57	7360905 .474
Loose consistency/com pactness	29	93.577 6395	225	4707.36 4776	1282.18 2389	5989.54 7164	914.116 4844	76.1763 737	0.21981 5768	7061.04 7163	700.556 7507	0.00036 2053	100132. 1777	59528.7 6579	0.0307649 47	8220992 8.04	7135633 .935
Medium consistency/com pactness	31	93.577 6395	225	5102.59 0659	1256.62 3097	6359.21 3756	910.166 1112	75.8471 7594	0.21791 9997	7653.88 5989	759.374 8313	0.00037 6946	99792.3 3546	60034.3 8956	0.0298004 59	7963262 8.38	6911930 .213
Medium consistency/com pactness	33	93.577 6395	225	5540.46 2661	1223.82 4558	6764.28 7219	905.837 3692	75.4864 4743	0.21585 2075	8310.69 3992	824.539 5682	0.00039 2787	99459.1 3986	60545.0 7367	0.0288419 1	7707119 8.42	6689603 .944
Medium consistency/com pactness	35	93.577 6395	225	6027.28 1476	1184.74 875	7212.03 0226	901.052 647	75.0877 2059	0.21357 7793	9040.92 2214	896.988 6396	0.00040 968	99132.2 0057	61061.5 1322	0.0278884 93	7452348 2.64	6468468 .035
Medium consistency/com pactness	37	93.577 6395	225	6570.55 8969	1140.29 4787	7710.85 3757	895.722 0624	74.6435 052	0.21105 8236	9855.83 8454	977.839 9724	0.00042 7745	98811.1 4927	61584.4 483	0.0269394 12	7198735 4.34	6248337 .892
Medium consistency/com pactness	39	93.577 6395	225	7179.30 8603	1091.30 3665	8270.61 2267	889.740 3074	74.1450 2562	0.20824 8697	10768.9 629	1068.43 4962	0.00044 7121	98495.6 3783	62114.6 7142	0.0259938 79	6946070 6.7	6029030 .65
Dense consistency/com pactness	41	93.577 6395	225	7864.42 0473	1038.56 2467	8902.98 294	882.982 5961	73.5818 8301	0.20509 735	11796.6 3071	1170.39 429	0.00046 7969	98185.3 3668	62653.0 3611	0.0250511 1	6694144 3.8	5810364 .386
Dense consistency/com pactness	43	93.577 6395	225	8639.15 0379	982.808 1025	9621.95 8481	875.299 398	72.9416 165	0.20154 3604	12958.7 2557	1285.69 0701	0.00049 0478	97879.9 3329	63200.4 6694	0.0241103 21	6442747 1.34	5592157 .32
Dense consistency/com pactness	45	93.577 6395	225	9519.76 4304	924.730 6187	10444.4 9492	866.509 5156	72.2091 263	0.19751 6069	14279.6 4646	1416.74 4923	0.00051 4869	97579.1 3081	63757.9 7153	0.0231707 24	6191668 6.91	5374226 .968
Dense consistency/com pactness	47	93.577 6395	225	10526.3 9746	864.976 1468	11391.3 7361	856.390 8731	71.3659 0609	0.19293 0026	15789.5 9619	1566.55 3508	0.00054 1407	97282.6 4679	64326.6 5475	0.0222315 28	5940696 9.85	5156389 .26
Dense consistency/com pactness	49	93.577 6395	225	11684.2 1356	804.149 5226	12488.3 6308	844.668 0996	70.3890 083	0.18768 4301	17526.3 2033	1738.86 1353	0.00057 0405	96990.2 1201	64907.7 3593	0.0212919 25	5689617 0.16	4938457 .584
Dense consistency/com pactness	51	93.577 6395	225	13024.9 9051	742.816 6171	13767.8 0713	830.995 5593	69.2496 2994	0.18165 7431	19537.4 8576	1938.39 7695	0.00060 2244	96701.5 6946	65502.5 6978	0.0203510 98	5438209 6.6	4720241 .742

Table 8: Tabulated results of Rock ground profile

5.2 Thermal expansion

5.2.1 Temperature variance

Diameter – 8 inches

Thickness – 0.251969 inches

Pipe Material Grade – API 5L X42 (42000 psi)

									Thermal Expansion						
Oper	Design	Oper	Design	Ambient	Sh	SL	Se	Anchor	Longitudinal	in/	Pressure	in/100ft	Total		
Pressure	Pressure	Tem	Tem	Temp				Force	Expansion	100ft	Expansion		Expansion		
270.24	696.94	73.4	140	77	11063.9007	-8921.7	19986	91530.41	0.0004221	0.50652	7.63028E-	0.091563316	0.598083316		
											05				
270.24	696.94	123.4	190	77	11063.9007	-18637	29701	153052.3	0.0007571	0.90852	7.63028E-	0.091563316	1.000083316		
											05				
270.24	696.94	173.4	240	77	11063.9007	-28352	39416	214574.2	0.0010921	1.31052	7.63028E-	0.091563316	1.402083316		
											05				
270.24	696.94	223.4	290	77	11063.9007	-38067	49131	276096.1	0.0014271	1.71252	7.63028E-	0.091563316	1.804083316		
											05				
270.24	696.94	273.4	340	77	11063.9007	-47782	58846	337618	0.0017621	2.11452	7.63028E-	0.091563316	2.206083316		
											05				
270.24	696.94	323.4	390	77	11063.9007	-57497	68561	399139.9	0.0020971	2.51652	7.63028E-	0.091563316	2.608083316		
											05				

 Table 9: Thermal expansion rate during temperature change

5.2.2 Pressure Variance

Diameter – 8 inches

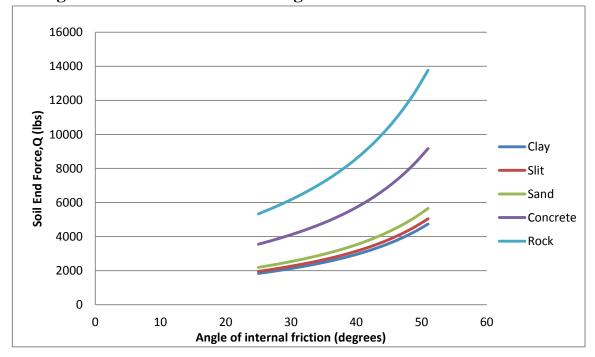
Thickness – 0.251969 inches

Pipe Material Grade – API 5L X42 (42000 psi)

									Thermal Expansion							
Oper	Design	Oper	Design	Ambient	Sh	SL	Se	Anchor F	Longitudinal	in/100ft	Pressure	in/100ft	Total			
Pressure	Pressure	Tem	Tem	Temp					Expansion		Expansion		Expansion			
270.24	270.24	73.4	140	77	4290.05155	-10954	15244	82951.1	0.0004221	0.50652	2.95866E-05	0.035503875	0.542023875			
270.24	320.24	73.4	140	77	5083.79999	-10716	15800	83956.41	0.0004221	0.50652	3.50607E-05	0.042072828	0.548592828			
270.24	370.24	73.4	140	77	5877.54843	-10478	16355	84961.72	0.0004221	0.50652	4.05348E-05	0.04864178	0.55516178			
270.24	420.24	73.4	140	77	6671.29687	-10240	16911	85967.03	0.0004221	0.50652	4.60089E-05	0.055210733	0.561730733			
270.24	470.24	73.4	140	77	7465.0453	-10001	17466	86972.34	0.0004221	0.50652	5.14831E-05	0.061779685	0.568299685			
270.24	520.24	73.4	140	77	8258.79374	-9763.3	18022	87977.65	0.0004221	0.50652	5.69572E-05	0.068348638	0.574868638			
270.24	570.24	73.4	140	77	9052.54218	-9525.1	18578	88982.96	0.0004221	0.50652	6.24313E-05	0.07491759	0.58143759			
270.24	620.24	73.4	140	77	9846.29062	-9287	19133	89988.27	0.0004221	0.50652	6.79055E-05	0.081486543	0.588006543			
270.24	670.24	73.4	140	77	10640.0391	-9048.9	19689	90993.58	0.0004221	0.50652	7.33796E-05	0.088055496	0.594575496			
270.24	720.24	73.4	140	77	11433.7875	-8810.8	20245	91998.89	0.0004221	0.50652	7.88537E-05	0.094624448	0.601144448			

Table 10: Thermal expansion rate during pressure change

5.2.3 Pressure and Temperature Variance


Diameter – 8 inches

Thickness – 0.251969 inches

Pipe Material Grade – API 5L X42 (42000 psi)

									Thermal Expansion				
Oper Pressure	Design Pressure	Oper Tem	Design Tem	Ambient Temp	Sh	SL	Se	Anchor F	Longitudinal Expansion	in/100ft	Pressure Expansion	in/100ft	Total Expansion
270.24	270.24	73.4	140	77	4290.05155	-10954	15244	82951.1	0.0004221	0.50652	2.95866E- 05	0.035503875	0.542023875
270.24	320.24	123.4	190	77	5083.79999	-20431	25515	145478.3	0.0007571	0.90852	3.50607E- 05	0.042072828	0.950592828
270.24	370.24	173.4	240	77	5877.54843	-29908	35785	208005.5	0.0010921	1.31052	4.05348E- 05	0.04864178	1.35916178
270.24	420.24	223.4	290	77	6671.29687	-39385	46056	270532.7	0.0014271	1.71252	4.60089E- 05	0.055210733	1.767730733
270.24	470.24	273.4	340	77	7465.0453	-48861	56326	333060	0.0017621	2.11452	5.14831E- 05	0.061779685	2.176299685
270.24	520.24	323.4	390	77	8258.79374	-58338	66597	395587.2	0.0020971	2.51652	5.69572E- 05	0.068348638	2.584868638
270.24	570.24	373.4	440	77	9052.54218	-67815	76868	458114.4	0.0024321	2.91852	6.24313E- 05	0.07491759	2.99343759
270.24	620.24	423.4	490	77	9846.29062	-77292	87138	520641.6	0.0027671	3.32052	6.79055E- 05	0.081486543	3.402006543
270.24	670.24	473.4	540	77	10640.0391	-86769	97409	583168.8	0.0031021	3.72252	7.33796E- 05	0.088055496	3.810575496
270.24	720.24	523.4	590	77	11433.7875	-96246	107680	645696	0.0034371	4.12452	7.88537E- 05	0.094624448	4.219144448

Table 11: Thermal expansion rate during both temperature and pressure change

5.3 Graphical Analysis5.3.1Angle of internal friction Vs Longitudinal end force

Figure 17: Graph – Angle of internal friction Vs Longitudinal end force

5.3.2 Angle of internal friction vs Lateral end force

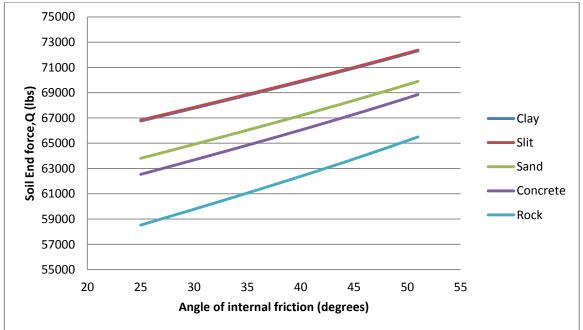
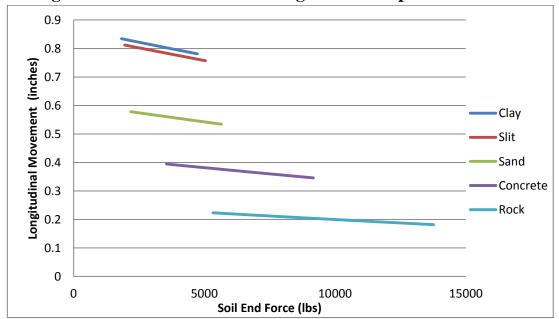
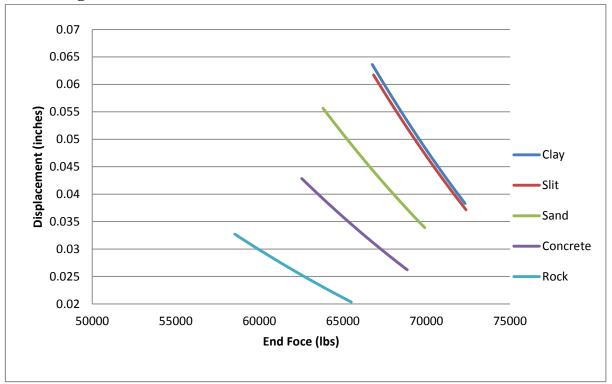




Figure 18: Graph - Angle of internal friction Vs Lateral end force

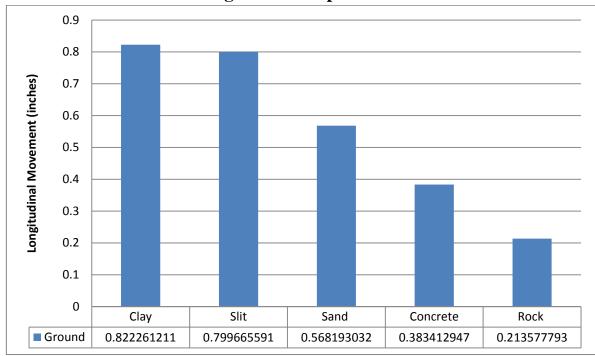

5.3.3 Longitudinal soil end force Vs Longitudinal Displacement

Figure 19: Graph - Longitudinal soil end force Vs longitudinal movement

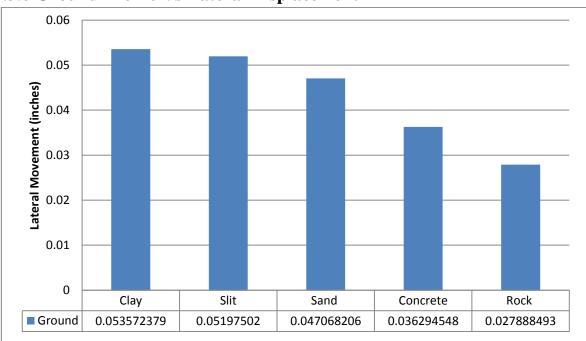
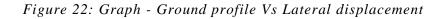

5.3.4 Longitudinal Soil End Force Vs Lateral Movement

Figure 20: Graph - Longitudinal soil end force Vs Lateral movement



5.3.5 Ground Profile Vs Longitudinal Displacement

Figure 21: Ground profile Vs Longitudinal displacement

5.3.6 Ground Profile Vs Lateral Displacement

5.3.7 Ground Profile Vs Bending Stress

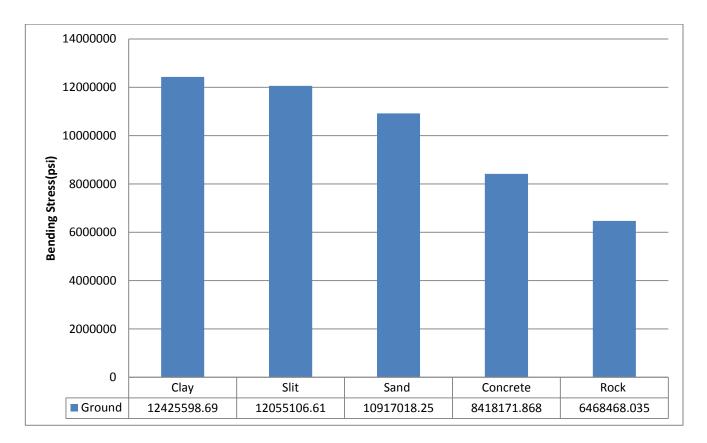


Figure 23: Ground profile Vs bending stress

From the figure 17, it can be seen that as the angle of internal friction increases the longitudinal end force also increases. We can see that the ground profile for rock provides the highest end force. The ground profile having clay has a lower end force compared to other ground profiles for the same internal angle.

From figure 18, the graph plots values of soil end force with that of the angle of internal friction. For each ground profile the end force increases as the angle of internal friction increases. It can be seen that the end force for both clay and slit seem to be almost very similar to each other for the same angle of friction. It is also interesting to see that the soil end force (lateral) is lower for the rock ground profile. With clay and slit having the highest amount of end force, and rock the least.

From figure 19 it can be seen that the longitudinal movement or the displacement is dependent on the soil end force. As the end force increases the movement decreases. Also, it is noticeable that the longitudinal movement varies only by very minimal amounts as end force varies, even with at high differences.

Figure 20 depicts that as the end force increases the lateral movement decreases. Highest displacement is caused by clay ground profile and rock has the lost displacement out of the lot. Also the bending stress is lowest for rock ground profile as the ground is very compact and stiff. This is very dangerous as it can cause excessive vibrations and increase of vibrations in the soil-pipe interface, which can damage the pipeline.

CHAPTER 6

6. CONCLUSIONS

From the results of this project it was found out that the wall of a pipeline is very thin compared with that of a plant piping for the same process parameters and boundary conditions. The wall thickness calculated by the code formulae is enough to ensure the structural integrity of the main pipeline. However for crossings it should be noted that a thicker pipe is used to improve structural integrity.

When considering fully restrained lines which are retrained by either the soil friction or mechanical anchors, the longitudinal stress eventually becomes compressive for a moderate temperature change. The longitudinal stress needs to be considered along with the hoop stress for determining the equivalent stress and should be limited to 0.9 SMYS.

Temperature plays an important role in equivalent stress. As the equivalent stress is used to determine the wall thickness, the temperature rise or fall also will determine the wall thickness. The internal pressure will reduce longitudinal compressive stress at fully restrained sections of the line. The pressure also increases the expansion rates at unrestricted profiles.

The anchor force, which is required to prevent pipe movement at fully restrained sections of the pipeline, should be equal to the sum of force required to resist the longitudinal stress at the restrained side along with the pressure end force at the unrestrained side.

During the soil pipe interaction analysis of the buried pipeline, the pipe expands towards the end or towards a bend in the line profile. However the central portion of the line will be fully restrained by the soil friction force. The total movement at the free end is inversely proportional to the soil friction force, whereas the movement is directly proportional to the square of the temperature differences between the operating and installation temperatures.

To prevent very high stresses developed in the pipeline bends or ends, proper care should be taken to reduce the stresses such that it is in the allowable range. The installation of an anchors and the installation of soft materials or softer soils (which act as shock absorbers) behind the pipe of the lateral legs can be used to reduce stresses. Stress build up can also be reduced by using/ installing a thicker wall pipe near the bend area.

Analysis allows to pre determine the how the pipeline would behave if it was located at different conditions. This soil pipe interaction allows the stress analysis of the pipeline and pre determines stress values.

One of the major factors that affect soil pipe interaction analysis is to determine the soil characteristics. If the soil data is available and survey is carried out properly the analysis can be done effectively. Even though different ground profiles were analyzed in this study, proper soil correlation formulas are still needed for further analysis. The various ground profile studied in this analysis, for the same pipeline provides a clear physical picture of the various processes taking place. It allows for a comparison of how the pipeline would behave if it was constructed in different ground profiles.

With regards to the Kota project the analysis allowed the determination of how the pipeline would behave in different ground profiles. All the stress analysis along with the soil pipe interactions were studied and compared. This data can be used for comparison of surveyor data as well as engineering data if at all any physical soil analysis is carried out at site. It can be concluded that soil survey data is an important factor for soil pipe interaction. Faulty survey data and wrong interpretation of data can lead to huge losses for every party involved in a project. Huge economic losses can be prevented if proper analysis and proper engineering methods are followed.

REFERENCES

- Bhattacharya, A. (2012). A comparison of simple analytical methods for pipelines . Chicago Bridge & Iron Company.
- Chaun Peng, L. (1978). Stress analysis methods for underground pipelines. Pipeline Industry.
- Dash, S. S. (2007). Guidelines for Seismic Design of Buried Pipelines. Kanpur: Indian Institute of Technology.
- FaiNg, D. P. (1994). Behaviour of buried pipelines subjected to stress. University of Sheffield.
- 5) Indian Standard 1498, I. (1970). Classification and identification of soils. CED 43.
- Joshi , A. A., Cherian , R. T., & Rao , G. R. (2001). Piping Stress Analysis. Mumbai: University of Mumbai.
- 7) Liangchaun, P. (1978). Soil Pipe Interaction. Pipeline Industry.
- Peng, L. (1988). An interpretation on pressure elongation in piping systems. Houston, Texas: The M.W Kellogg Company.
- Talesnick, M. L., Xia, H. W., & Moore, I. D. (2011). Earth pressure measurements on buried HDPE pipe. Talesnick.
- 10) ASME B31.4, T. A. (2002). Pipeline transportation systems for liquid hydrocarbons and other liquids. ASME 831.4-2002.

- 11) Super Civil. (2010). Retrieved from Civil engineering of pipes: http://www.supercivilcd.com/FRICTION.htm
- 12) Technical pipe analysis. (2013). Retrieved from http://usacetechnicalletters.tpub.com/ETL-1110-3-446/ETL-1110-3-4460006.htm
- Carter, A. (2002). Retrieved from Dry denisty: http://web.ead.anl.gov/resrad/datacoll/soildens.htm
- 14) Engineering tool box. (2013). Retrieved from Engineering tool box: http://www.engineeringtoolbox.com/pipe-formulas-d_1335.html
- 15) Geo. (2001). Retrieved from Rock properties:

http://www.geotechnicalinfo.com/angle_of_internal_friction.html

- 16) Line size . (1999). Retrieved from Line pipe properties: http://www.woodcousa.com/line_pipe_properties.htm
- 17) Engineering toolbox. (2014). Retrieved from Pipe formulas: http://www.engineeringtoolbox.com/pipe-formulas-d_1335.html