EFFECT OF HEAT TREATMENT ON CORROSION BEHAVIOUR OF ALUMINIUM ALLOY 6061 BY FRICTION STIR WELDING

A Project thesis submitted to College of Engineering Studies in partial fulfilment of the requirements for the award of the Degree of

MASTER OF TECHNOLOGY

IN

PIPELINE ENGINEERING

Submitted by

EJAJ HUSSAIN. G

R150213011

Under the guidance of

Mr. S. ANIL BABU

Assistant Professor, Department of Mechanical Engineering, UPES, Dehradun.

Approved

.....

Dean

COLLEGE OF ENGINEERING STUDIES UNIVERSITY OF PETROLEUM & ENERGY STUDIES DEHRADUN MAY 2015

CERTIFICATE

This is to certify that the work contained in this thesis titled "EFFECT OF HEAT TREATMENT ON CORROSION BEHAVIOUR OF ALUMINIUM ALLOY 6061 BY FRICTION STIR WELDING" has been carried out by EJAJ HUSSAIN.G under my supervision and has not been submitted elsewhere for a degree.

Date:

SUPERVISOR

Mr. S. ANIL BABU Assistant Professor, Department of Mechanical Engineering, UPES, Dehradun.

ACKNOWLEDGEMENT

I place on record my sincere gratitude to my guide **Mr. ANIL BABU**, Assistant professor, Department of Mechanical Engineering, UPES for granting me an opportunity to do my project under his guidance. His valuable insights has been instrumental in the successful completion of the project.

I solicit my earnest gratitude to **Dr. KAMAL BANSAL**, Dean, College of Engineering Studies, University of Petroleum and Energy Studies, Dehradun for providing me the opportunity to pursue my project work.

I thank our class coordinator Mr. SANTHOSH KUMAR KURRE and review committee member Mr. ADARSH K. ARYA for their valuable suggestions for completion of the project successfully.

I also thank the teaching and non-teaching staff members of Mechanical Engineering Department and all of our fellow students who stood with us to complete the project successfully.

Finally, I can never forget to be highly indebted to my family and friends whose love, support and blessings have always inspired me throughout my work.

ABSTRACT

Friction Stir Welding (FSW) is a solid state joining process that involves joining of metals without fusion or filler materials. FSW applications are shipbuilding, aerospace, railway, electrical, automobile industries etc. Hence samples are welded at four different speed such as 800rpm, 900rpm, 1000rpm & 1200rpm. Thus the purchased plates is fabricated in the dimensions of 100*50*6mm as per the fixture shape and plates are welded together by butt joint of FSW. Hence welded samples are subjected to Heat treatment for 3-4 hours at 200-250 °C.

Thus Corrosion behaviour study is carried out after welding. Hence welded samples are subjected to pitting corrosion due to welding at Nugget region and welded samples of Aluminium Alloy (AA) 6061 plate are subjected into corrosion study with a help of potentiodynamic polarization study. In this study, there are three (3) electrodes that should be integrated to undergo the testing. The electrodes which involved in electrochemical cell would be working electrode (WE), reference electrode (RE) and calomel electrode (CE). Electrochemical corrosion test by Tafel extrapolation method was carried out on all welded samples of base alloy weld region of AA6061 in sodium chloride solution of 3% NaCl to determine corrosion parameters, such as corrosion potential (Ecorr) and corrosion current (Icorr). The corrosion rates of the material will depend on the corrosion current (Icorr).

Aluminium Alloy (AA) 6061 plate followed by Corrosion behaviour study is subjected to Microstructure examination. In order to examine the free defects from the surface of welding as well as to reveal the precipitation across the surface due to welding for all four samples and images are captured for precipitation as well as Micro-Hardness study Hence this microstructure study is examined with a help of Metallurgical microscope.

Finally Chemical composition of each welded samples are checked out in order to find out the nominal composition of most Aluminium percentage among all four samples. Chemical composition results gives the reason for corrosion rate influence for all welded samples. Chemical composition are checked with a help of Spectroscope machine.

TABLE OF CONTENTS

CHAPTER NO.	TITLE	PAGE NO.
	ABSTRACT	iv
	LIST OF FIGURES	ix
	LIST OF TABLES	xi
	NOMENCLATURE	xii
	ABBREVIATIONS	xiii
1	INTRODUCTION	1
	1.1. HISTORY OF WELDING	2
	1.2. CLASSIFICATION OF WELDING PROCESS	3
	1.3. OBJECTIVES	4
	1.4. PROBLEM IDENTIFICATION	5
	1.5. SIGNIFICATION OF THE PROJECT	5
	1.5.1. NEED FOR RESEARCH	6
	1.5.1.1. COATING AND LINERS	6
	1.5.1.2. CATHODIC PROTECTION	6
	1.5.1.3. MATERIALS SELECTION	6
	1.5.1.4. CORROSION INHIBITORS	6
2	LITERATURE REVIEW	7
	2.1. CONCLUSION FROM LITERATURE	9
	2.2. GAP ANALYSIS	9
3	METHODOLOGY	10
	3.1. TASK WORK FLOW	10
	3.2. MATERIAL SELECTION FOR WELDING & FSW	
	TOOL	11
	3.2.1. COMPOSITION OF ALUMINIUM PLATE	12
	3.2.2. SPECIFICATION OF AA6061 PLATE	13

3.2.3. COMPOSITION OF TOOL	13
3.2.4. TOOL PIN PROFILE	14
3.2.5. SPECIFICATION OF TOOL	14
3.3. THE IDEAS OF FRICTION STIR WELDING	15
3.3.1. FRICTION STIR WELDING	15
3.3.2. METALLURGICAL BENEFITS	15
3.3.3. ADVANTAGES	15
3.3.4. APPLICATIONS	16
3.3.5. LIMITATION	16
3.3.6. FRICTION STIR WELDING MICROSTUCTURE	
ZONES	16
3.4. FRICTION STIR WELDING MACHINE	18
3.4.1. FSW SPECIFICATION	19
3.4.2. FSW PROCESS PARAMETERS	20
3.4.2.1. WELDING PARAMETERS	20
3.4.2.2. TOOL PARAMETERS	20
3.4.3. WELDED SAMPLES DIAGRAMS	20
3.5. HEAT TREATMENT OF WELDED SAMPLES ON	
ALUMINIM ALLOY 6061	21
3.6. CORROSION MECHANISM	22
3.6.1. PITTING CORROSION	22
3.6.2. A CORROSION BEHAVIOR STUDY ON	
ALUMINUM ALLOY 6061	23
3.6.3. TAFEL POLARIZATION GRAPH	23
3.6.4. CALCULATION OF CORROSION RATE	
FROM CORROSION CURRENT	25
3.6.5. WELDED PIECES FOR CORROSION TEST	
& MICROSTRUCTURE	26
3.7. SAMPLE PREPARATION FOR CORRSOION TEST	27
3.7.1. ELECTROCHEMICAL CELL	27
3.7.2. CORRODED WELDPIECES	28

3.8. AN EXAMINATION OF MICROSTRUCTURE	
ON ALUMINIUM ALLOY 6061	29
3.8.1. METALLURGICAL MICROSCOPE	29
3.8.2. WORKING PRINCIPLE	29
3.9. SAMPLE PREPARATION FOR MICROSTRUCTURE	
SCANNING	30
3.9.1. SPECIMEN SIZING	30
3.9.2. MOUNTING	30
3.9.3. GRINDING & POLISHING	30
3.9.4. ETCHING	31
3.10. CHEMICAL COMPOSITION ON ALUMINUM	
ALLOY 6061	32
RESULTS AND DISCUSSION	33
4.1. A CORROSION BEHAVIOR STUDY ON	
ALUMINUM ALLOY 6061	33
4.2. GRAPH FOR 800 RPM	33
4.2.1. CYCLIC SWEEP GRAPH	33
4.2.1. TAFEL POLARIZATION GRAPH	33
4.2.3. RESULTS FROM GRAPH	34
4.3. GRAPH FOR 900RPM	35
4.3.1. CYCLIC SWEEP GRAPH	35
4.3.2. TAFEL POLARIZATION GRAPH	35
4.3.3. RESULTS FROM GRAPH	36
4.4. GRAPH FOR 1000 RPM	37
4.4.1. CYCLIC SWEEP GRAPH	37
4.4.2. TAFEL POLARIZATION GRAPH	37
4.4.3. RESULTS FROM GRAPH	38
4.5. GRAPH FOR 1200 RPM	39
4.5.1. CYCLIC SWEEP GRAPH	39

4

vii

4.5.2. TAFEL POLARIZATION GRAPH	39
4.5.3. RESULTS FROM GRAPH	40
4.6. COMBINED GRAPH FROM DIFFERENT SPEED	41
4.6.1. CYCLIC SWEEP GRAPH	41
4.6.2. COMBINED RESULTS FROM DIFFERENT	
SPEED	42
4.7. AN EXAMINATION OF MICROSTRUCTURE	
ON ALUMINUM ALLOY 6061	43
4.7.1. MICROSTRUCTURE OF WELDED SPEED	
SAMPLES	43
4.7.2. MICRO HARDNESS TEST	44
4.8. CHECKING OF CHEMICAL COMPOSITION	
ON ALUMINUM ALLOY 6061	45
4.8.1. CHEMICAL COMPOSITION OF 800RPM	45
4.8.2. CHEMICAL COMPOSITION OF 900RPM	46
4.8.3. CHEMICAL COMPOSITION OF 1000RPM	47
4.8.4. CHEMICAL COMPOSITION OF 1200RPM	48
CONCLUSION AND FUTURE ENHANCEMENTS	49
5.1. CONCLUSION	49
5.2. FUTURE ENHANCEMENTS	49

5

REFERENCE	50

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
3.1.1.	TASK WORKFLOW OF THE PROCESS	10
3.2.1.	IMAGE OF AA 6061 PLATE	11
3.2.1.1.	IMAGE OF AA 6061 PLATE COMPOSITION	12
3.2.4.1.	PRO-E DIAGRAM OF FSW TOOL	14
		17
3.4.1.	IMAGE OF FRICTION STIR WELDING MACHINE	16
3.4.3.1.	IMAGE OF WELDED SAMPLES OF DIFFERENT	
	SPEED	16
3.4.6.1.	CROSS SECTIONAL AREA OF MATERIAL	17
3.5.1.	IMAGE OF ELECTRIC FURNACE	21
3.6.1.1.	GENERALIZED ILLUSTRATION OF PITTING	
	CORROSION ON ALUMINIUM ALLOYS	23
3.6.3.1.	CORROSION RATE DETERMINATION	23
3.6.3.2.	MODEL TAFEL POLARIZATION GRAPH	25
3.6.5.1.	IMAGE OF WELDED PIECES FOR CORROSION	
	TEST & MICROSTRUCTURE	26
3.7.1.1.	IMAGE OF AN ELECTROCHEMICAL CORROSION	
	SETUP	27
3.7.2.1.	IMAGES OF CORRODED PIECES	28
3.8.2.1.	IMAGE OF METALLURGICAL MICROSCOPE	29
3.9.3.1.	IMAGE OF POLISHING MACHINE	30
3.9.4.1.	IMAGE OF MOUNTED PIECE SAMPLES FOR	
	MICROSTRUCTURE	31
3.10.1.	IMAGE OF SPECTRA MAX MACHINE	32
4.2.1.1.	CYCLIC SWEEP GRAPH (800 RPM)	33
4.2.2.1.	TAFEL POLARIZATION GRAPH (800 RPM)	33
4.3.1.1.	CYCLIC SWEEP GRAPH (900 PRM)	35

4.3.2.1.	TAFEL POLARIZATION GRAPH (900 RPM)	35
4.4.1.1.	CYCLIC SWEEP GRAPH (1000 RPM)	37
4.4.2.1.	TAFEL POLARIZATION GRAPH (1000 RPM)	37
4.5.1.1.	CYCLIC SWEEP GRAPH (1200 RPM)	39
4.5.2.1.	TAFEL POLARIZATION GRAPH (1200 RPM)	39
4.6.1.1.	CYCLIC SWEEP GRAPH FOR DIFFERENT SPEED	41
4.6.2.1.	GRAPH FOR CORROSION RATE AT DIFFERENT	
	SPEED	42
4.7.1.1.	IMAGES OF DIFFERENT SPEED SAMPLES	43
4.7.2.1.	GRAPH OF VICKERS HARDNESS AT DIFFERENT	
	SPEED	44
4.8.1.1.	CHEMICAL COMPOSITION OF 800RPM	45
4.8.2.1.	CHEMICAL COMPOSITION OF 900RPM	46
4.8.3.1.	CHEMICAL COMPOSITION OF 1000RPM	47
4.8.4.1.	CHEMICAL COMPOSITION OF 1200RPM	48

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
3.2.1.1.	NOMINAL COMPOSITION OF AA 6061	13
3.2.2.	SPECIFICATION OF AA6061 PLATE	13
3.2.3.1.	CHEMICAL COMPOSITION OF HCHCr STEEL	
	TOOL	13
3.2.5.1.	SPECIFICATION OF HCHCr STEEL TOOL	14
3.4.2.1.1.	WELDING PARAMETERS	20
3.7.1.1.	TYPES OF ELECTRODE USED IN CORROSION	
	TESTS	28
4.6.2.1.	VALUES OF VARIOUS PARAMETERS FOR	
	DIFFERENT SPEED	42

NOMENCLATURE

E	-	Potential in Volt (V)
i	-	Current in Ampere (A)
R	-	Resistance in Ohm (Ω)
Q	-	Charge passed (coulombs)
Ν	-	Number of electrons involved in the electrochemical reaction
W	-	Weight of electroactive species (gr)
М	-	Molecular weight (gr)
C.R. (_{mpy})	-	Corrosion rate in milli-inches per year (mpy)
I _{corr}	-	Corrosion current density (µA/cm2)
E.W	-	Equivalent weight of the corroding species (g)
D	-	Density of the corroding species (g/cm3)
E _{stat}	-	Starting potential in Volt (V)
E _{end}	-	Final/End potential in Volt (V)
E _{corr}	-	Pitting potential in Volt (V)
I _{corr}	-	Pitting Current in (A/cm ²)
Rp	-	Linear Polarization Resistance in (Ohm)
b _a	-	Anodic Voltage in (V/dec)
b _c	-	Cathodic Voltage in (V/dec)
C. R	-	Corrosion Rate in (mm/y)

ABBREVIATIONS

FSW	-	FRICTION STIR WELDING
HT	-	HEAT TREATMENT
SEM	-	SCANNING ELECTRON MICROSCOPE
MM	-	METALLURGICAL MICROSCOPE
СР	-	CATHODIC PROTECTION
AA	-	ALUMINIUM ALLOY
HCHCr	-	HIGH CARBON HIGH CHROMIUIM
GTAW	-	GAS TUNGSTEN ARC WELDING
GMAW	-	GAS METAL ARC WELDING
MIG	-	METAL INERT GAS
HAZ	-	HEAT AFFECTED ZONE
TMAZ	-	THERMO MECHANICAL AFFECTED ZONE
BM	-	BASE METAL
EDS	-	ELECRO DISPERSIVE SPECTROSCOPY
OCP	-	OPEN CIRCUIT POTENTIAL
WE	-	WORKING ELECTRODE
RE	-	REFERENCE ELECTRODE
CE	-	CALOMEL ELECTRODE
RPM	-	REVOLUTION PER MINUTE
HCl	-	HYDROCHLORIC ACID
NaCl	-	SODIUM CHLORIDE
HNO ₃	-	NITRIC ACID
HF	-	HYDROFLOURIC ACID

VH - VICKERS HARDNESS