DESIGN OF DISTILLATION COLUMN AND OTHER EQUIPMENT FOR THE PRODUCTION OF FORMALDEHYDE

A Report

Submitted By

ANJALI KUMARI (R900211004)
SONAL BHADAURIYA (R900211028)
PRAKHAR PATHAK (R900211053)
in partial fulfillment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

in
CHEMICAL ENGINEERING with specialization in REFINING AND PETROCHEMICALS

Under the Guidance of
Mr. Giridhar Vadicharla
Assistant Professor

DEPARTMENT OF CHEMICAL ENGINEERING

COLLEGE OF ENGINEERING STUDIES

UNIVERSITYOF PETROLEUM \& ENERGY STUDIES
Bidholi Campus, Energy Acres
Dehradun-248007
APRIL-2015

CERTIFICATE

This is to certify that the thesis titled Design of Distillation Column and Other Equipment for the Production of Formaldehyde submitted by Anjali Kumari (R900211004), Sonal Bhadauriya ($R 900211028$) and Prakhar Pathak ($R 900211053$), to the University of Petroleum and Energy Studies, for the award of the degree of BACHELOR OF TECHNOLOGY in Chemical Engineering with specialization in Refining \& Petrochemicals is a bonafide record of project work carried out by them under my supervision.

Mr. Giridhar Vadicharla
Assistant Professor

Dr. Ashutosh Pandey

Head of the Chemical Engineering Department

ACKNOWLEDGEMENT

We would like to express our sincerest gratitude to our Vice Chancellor, Professor Shrihari who gave us the opportunity to work on this project. We are also grateful to Professor Ashutosh Pandey, Head of the Chemical Department who constantly motivated us. We are highly grateful and want to express our sincerest thanks to our mentor, Mr. Giridhar Vadicharla, Assistant Professor. We owe our project completion to him and we thank him for his constant support. We would also like to thank various teachers of Department of Chemical Engineering who solved our queries. We would also like to thank Allied Resins and Chemicals, Kolkata for giving us invaluable information about their process. We are also highly thankful to all our peers for constantly motivating us.

[^0]
NOMENCLATURE

$\xi \quad$ Moles of Formaldehyde Formed
$\chi \quad$ Mole fraction
P Pressure
T Temperature
$T_{c} \quad$ Critical Temperature
$P_{c} \quad$ Critical Pressure
D Distillate
B Bottom
$N_{i} \quad$ Stream Number
$t_{r} \quad$ Reduced Temperature
$C_{P} \quad$ Heat Capacity
$\rho_{L} \quad$ Density of Liquid
$\rho_{V} \quad$ Density of Vapour
$n_{i} \quad$ Number of Moles of Component i
$H_{f} \quad$ Enthalpy of Feed
$H_{b} \quad$ Enthalpy of Bottom
$H_{d} \quad$ Enthalpy of Dstillate
F Feed
$\phi_{b} \quad$ Reboiler Load
$\phi_{c} \quad$ Condenser Load
λ Heat of Vaporization
$\dot{m} \quad$ Mass Flow Rate
R Reflux Ratio
$R_{m} \quad$ Minimum Reflux Ratio
$\alpha \quad$ Relative Volatility
q Quality of Feed
$\nu \quad$ Constant used in Underwood's Equation
$\mu \quad$ Viscosity
$v_{f} \quad$ Flooding Vapour Velocity
$\sigma \quad$ Surface Tension
$\dot{Q} \quad$ Volumetric Flow Rate
$M_{\text {avg }}$ Average Molecular Weight
$\theta_{\text {res }}$ Residence Time
$\phi \quad$ Froth Density at Normal Operating Conditions
U Overall Heat Transfer Coefficient
k Thermal Conductivity
$B_{s} \quad$ Baffle Spacing
$C_{O L}$ Cost of Operating Labour
$C_{O M}$ Cost of Manufacturing

Abstract

This report deals with the designing of Distillation Column and other equipment like reboiler, condenser and heat exchanger aiding the production of Formaldehyde. A plant of capacity 60000 TPA is chosen. Entire Mass Balance and Energy Balance is done for the plant. After finding out the molar flow rates through each stream and heat duties required, the distillation column is designed. In the Distillation Column, minimum Reflux Ratio, minimum Number of Trays, Optimum Feed Stage and Tray design and layout is done. Reboiler and Condenser are also designed. Shell side and tube side Transfer coefficients and Pressure drops are analyzed. In the end, we have tried incorporating the cost estimation and Economics of the plant.

TABLE OF CONTENTS

Certificate i
Acknowledgement ii
Abstract iv
1 Introduction \& Motivation 1
2 Literature Review 2
2.1 Alternative Processes 2
2.2 Physical and Chemical Properties 2
2.3 World Formaldehyde Production \& Indian Scenario 3
2.4 Preliminary Cost of Materials 4
2.5 Uses 4
3 Objectives 6
4 Methodology 7
5 Process Flow Diagram 8
6 Mass Balance \& Energy Balance 9
6.1 Mass Balance 9
6.1.1 First Run 10
6.1.2 Second Run 17
6.2 Material Balance Data Sheets 21
6.3 Energy Balance 27
7 Design of Distillation Column 40
7.1 Selection of Operating Pressure 40
7.2 FUG(Fenske-Underwood-Gilliland) Method 42
7.3 Molokanov Approach 47
7.4 Optimum Feed Stage 48
7.5 Determination of Sieve Tray Tower Diameter 48
7.6 Tray Efficiencies and Column Height 54
7.7 Selection of Liquid Flow Pattern over the Sieve Tray 56
7.8 Tray Layout and Hydraulics 57
7.9 Design Schematics for Rectifying Section 71
8 Design of Auxilliary Equipment 73
8.1 Reboiler Design 73
8.2 Condenser Design 79
8.3 Heat Exchanger Design 86
9 Cost Estimation 92
9.1 Operating Cost labour 92
9.2 Cost of Manufacturing 93
9.3 Direct Manufacturing Cost 93
9.4 Fixed Manufacturing Cost 93
9.5 General Manufacturing Expenses 94
10 Conclusion 95
References 96

List of Tables

1 Physical and Chemical Properties of various Components 2
2 Formaldehyde Plants in India 4
3 Preliminary Cost of Materials (INR*=Indian National Rupee) 4
4 Composition of Bottom Stream(First Run) 17
5 Composition of Bottom Stream(Second Run) 20
6 Mass Balance Data sheet (before Scaling) on 10 kmol Methanol /hr basis 21
7 Mass Balance Data sheet (before Scaling) on $\mathrm{kg} / \mathrm{hr}$ basis 22
8 Mass Balance Data Sheet (before scaling) on ton/year mass unit 23
9 Mass Balance Data Sheet (after scaling) on ton/year mass unit 24
10 Mass Balance Data Sheet (after scaling) on $\mathrm{kg} / \mathrm{hr}$ mass unit 25
11 Mass Balance Data Sheet (after scaling) on $\mathrm{kmol} / \mathrm{hr}$ mass unit 26
12 Coefficients for the calculation of Heat Capacity 27
13 Energy Balance around the Reactor 32
14 Properties of Components of Distillate 38
15 Composition of Feed, Distillate and Bottom Streams 40
16 Relative Volatilities (wrt to Water) and the Composition in the Feed Stream 45
17 Relative Volatilities (wrt to Water) and the Composition in the Distillate Stream 46
18 Selection of Liquid Flow Pattern 56
19 Calculation of Critical Pressure for a mixture 74
20 Heat of Vaporization calculation for Bottom Stream 76

List of Figures

1 Structure of the world Formaldehyde capacity broken down by region, 2012 [2, 4] 3
2 Process Flow Diagram 8
3 Mass Balance around the Reactor 10
4 Mass Balance around the Absorber 13
5 Mass Balance around the Distillation Column 16
6 Mixing Point between Stream 2, 15 and 3 28
7 Heat Exchanger E1 30
8 Compressor C1 30
9 Heat Exchanger E2 31
10 Mixing point between Streams 6, 7 and 8 32
11 Energy Balance around the Absorber 35
12 Energy Balance around the Heat Exchanger E3 36
13 Energy Balance around the Distillation Column 37
14 Distillation Column 41
15 VLE Diagram for Methanol-Water system at 70.94 C and 1.2 atm [17] 43
16 VLE Diagram for Methanol-Water system at 108.7 C and 1.3973atm [17] 44
17 Gilliland's Correlation [6] 46
18 Flooding Velocity Correlation for Sieve Tray Tower [6] 49
19 O'Conell Correlation for Tray Efficiency [6] 55
20 Cross Flow Liquid Flow Pattern 57
21 Fair's Entrainement Correlation [6] 58
22 Orifice Coefficient Correlation for Sieve Tray [6] 61
23 Weir Correction Factor for Segmental Downcomers in calculation of liquid head over the weir [6] 62
24 Column Design Schematics 71
25 Tray Design Schematics 72
26 Reboiler Geometry 77
27 Tube Side Friction Factor [8] 79
28 Shell-Side friction factors, segmental baffles [8] 84
29 Heat Exchanger cooling the Formalin Stream from $48^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ 86
30 Temperature Correction Factor-one shell pass,two or more even tube passes [12] 87
31 Tube Side Heat Transfer Factor [12] 89

1 Introduction \& Motivation

Chemical process and plant design involves a hierarchy of complex and creative activities including both routine and innovative design. Routine design is largely analytical and is primarily concerned with determining values for the specification and operation of specific units such as reactors, extractors and distillation columns. By contrast, process synthesis, the generation of conceptual flow sheets comprising such units, is a more open-ended activity characterized by a combinatorial large number of feasible alternatives. Finding better flow sheet alternatives has a significant impact on overall process competitiveness. This is a particularly true for separation process synthesis, the selection of separation methods, their inter connection, and their operating parameters. Virtually every chemical process involves the recovery, isolation or purification of products, by products, intermediates, wastes or raw materials [14]. The separation systems to accomplish these tasks often dominate the capital and operating costs of chemical manufacturing processes.

Several equipment approaches to the separations process synthesis problems have been formulated including super structure optimization, evolutionary modification and systematic generation from a known feed composition, desired product compositions and well defined set of separation methods, super structure optimization approaches constructive hypothetical flow sheet which includes all applicable separation methods interconnected in every possible order so as to include all possible separation schemes. Separation synthesis then becomes a problem of systematically stripping away the less desirable parts of this superstructure, simultaneously optimizing the design in operating parameters of the remaining separation methods.

Evolutionary modification starts with an existing flow sheet for a similar separation to which the adaptation is made as necessary to meet the objectives of the specific case at hand. This approach is exemplified by standard flow sheet pattern, for example the schemes for breaking heterogeneous minimum boiling azeotropes for the sequence for extractive distillation, although rarely resulting in novel designs, evolutionary modification is a frequently used separations synthesis technique.

Formaldehyde, the target product of the projects plant, is an organic compound representing the simplest form of the aldehydes. It acts as a synthesis baseline for many other chemical compounds including phenol formaldehyde, urea formaldehyde and melamine resin. The most widely produced grade is formalin (37 wt . percent formaldehyde in water) aqueous solution.

This project deals with a comprehensive study of the Formaldehyde Producing Process using Methnaol that would lead to the design of the main constituent of the plant ; Distillation Column. The plant produces formaldehyde with a production capacity of 60000 TPA. This study will take into consideration various aspects including the entire plants process unit design, process flow diagrams, cost estimations, operation parameters, equipment sizing, construction materials and environment/safety precautions focussing on Distillation Coumn. This project requires the theoretical and practical application of mass transfer, heat transfer, fluid dynamics, unit operations, and reaction kinetics and process control. There are several tasks that are crucial to the completion of the project outlines including mass and energy balances, design of heat exchangers and distillation column and economic analysis.

2 Literature Review

The main purpose of this project is to conduct a comprehensive study that would lead to the design of the main constituent of the plant ; Distillation Column. This study will take into consideration aspects including the entire plants process unit design, process flow diagrams, cost estimations, operation parameters, equipment sizing, construction materials and environment/safety precautions. This project requires the theoretical and practical application of mass transfer, heat transfer, fluid dynamics, unit operations, and reaction kinetics and process control.

Formaldehyde, the target product of the projects plant, is an organic compound representing the simplest form of the aldehydes. It acts as a synthesis baseline for many other chemical compounds including phenol formaldehyde, urea formaldehyde and melamine resin. The most widely produced grade is formalin (37 wt . percent formaldehyde in water) aqueous solution [19].

2.1 Alternative Processes

Formaldehyde is to be commercially manufactured on an industrial scale from methanol and air in the presence of a sliver catalyst or the use of a metal oxide catalyst. Alternative processes for production of formaldehyde were studied which are as follows [2]:

1. Metal oxide catalyst process: In this process catalysts like vanadium pentoxide and ironmolybdenum oxide were put to use for the reaction to take place. The iron-molybdenum oxide catalyst makes formaldehyde from the exothermic reaction entirely. The disadvantage of this process design is the need for significantly large equipment to accommodate the increased flow of gases (3 times larger) compared to the original silver catalyst process design. This increase in equipment sizing clashes with economic prospect behind the design costs.
2.Production of Formaldehyde from Methane and Other Hydrocarbon Gases: Production of formaldehyde is through the oxidation of hydrocarbon gases. An increase in the amount produced of formaldehyde is expected in this process. However, the hydrocarbon formaldehyde is usually obtained as dilute solution which is not economically concentrated accompanied by other aldehydes and by-products. The difficulty in this method is in controlling the oxidation of reaction.

2.2 Physical and Chemical Properties

These are the various physical and chemical properties [4]:

Table 1: Physical and Chemical Properties of various Components

Name	Formula	Molecular Weight (kg/kmol)	Boiling Point (C)	$\lambda(\mathbf{K J} / \mathbf{m o l e})$
Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	32.042	64.7	35.27
Oxygen	O_{2}	31.999	-183	6.82
Air	..	28.851	-194.5	..
Formaldehyde	HCHO	30.026	-19.3	24.48
Hydrogen	H_{2}	2.016	-252.7	0.904
Water	$\mathrm{H}_{2} \mathrm{O}$	18.015	100	40.656
Formalin	HCHO	30.03	96	..
Silver	Ag	107.8682	1950	1950

Methanol

Its a light, volatile, colorless, clear and flammable liquid. It has a distinctive sweetish smell and close to alcohol in odor and colorlessness. Inhalation of methanol is much more hazardous than mere contact. Due to its low flash point, it forms an explosive mixture with air. The material should be stored in cooled well-ventilated isolated areas [19].

Formalin

This material is a highly toxic material that the ingestion of 30 ml is reported to cause fatal accidents to adult victims. Formaldehyde is flammable in the presence of sparks or open flames. Pure Formaldehyde is not stable, and concentrations of other materials increase over time including formic acid and para formaldehyde solids[10]. A gas at room temperature, formaldehyde is colorless and has a characteristic pungent, irritating odor. Stabilizers for formaldehyde product include hydroxypropyl methylcellulose, Methyl cellulose.

2.3 World Formaldehyde Production \& Indian Scenario

In 2012, the global production capacity of formaldehyde surpassed the 46.4 million tones mark. In the same year, the Asian-Pacific region held a share of 56% of the worlds total formaldehyde capacity. It was followed by Europe and North America, accounting for 22% and 15.83% shares, respectively. China was an unrivalled leader in terms of formaldehyde capacity, accounting for over 51% of the total capacity.

Figure 1: Structure of the world Formaldehyde capacity broken down by region, 2012 [2, 4]

Indian Scenario

Kanoria Chemicals and Industries is the largest producer of formaldehyde in India, with installed capacity of 1.8 lacs TPA(2012). Allied Resins and Chemicals has the second largest formaldehyde producer with installed capacity of 60000 TPA. Hindustan Organic Chemicals, with 30000 TPA capacities, standing third largest Indian formaldehyde producer. Atul Limited has an installed capacity of 20000 TPA of formaldehyde. Venlon Enterprises has installed capacity of 12000 TPA of formaldehyde. Following table gives the capacity of various plants installed in India.

Table 2: Formaldehyde Plants in India

Company	Percent of Total Turnover	Installed Capacity	Sales
Kanoria Chemicals \& Industries Ltd.	8	180000	39.53
Allied Resins \& Chemicals Ltd.	8	60000	5.48
Hindustan Organic Chemicals Ltd.	4	33000	28.21
Atul Ltd.	1	20000	12.71
Asian Paints	0.6	8100	1.3
Venlon Enterprises	9	12000	10.68
Century Laminating	1	9000	2.05

2.4 Preliminary Cost of Materials

An approximate order of magnitude preliminary analysis of some of the raw materials was done. Following table shows some of these values [11, 4]:

Table 3: Preliminary Cost of Materials (INR*=Indian National Rupee)

Material	Preliminary Cost
Methanol	15250-30500 INR*/ Metric Ton
Formalin	$23180-51118 \mathrm{INR}^{*} /$ Metric Ton
Silver	$61000-183000$ INR*/ Kilogram
Hydrogen	$1830-6100 \mathrm{INR}^{*} / 40$ L Cylinder
Deionized Water	$1.61 \mathrm{INR}^{*} / \mathrm{L}$

2.5 Uses

Formaldehyde is mainly used on the construction, automotive and furniture markets. It used to manufacture resins; as an intermediate for synthesizing other chemicals and is also directly used without further processing. Formaldehyde is commercially offered as a 37% to 50% aqueous solution, with 37% being the most widely used grade, which may also contain $0-15 \%$ methanol and a polymerization inhibitor. Because of this, the formaldehyde business is characterized by user facilities located near production facilities [19].

Formaldehyde is mainly used as resins, an intermediate and direct use:

Resins

The largest amount of formaldehyde finds application in the manufacture of Resins, viz., Phenol Formaldehyde (PF), Urea Formaldehyde (UF) and Melamine Formaldehyde (MF) - which finds applications in laminates, plywood, MDF, particle board and hard boards. UF, MF and PF resins accounted for approximately 66 to produce curable molding materials, as raw materials for surface coatings, as binders for foundry sand

Intermediate

Formaldehyde is also used for synthesizing chemicals like:
Penta-erythritol, Hexamine, Para formaldehyde, 1,4-Butanediol, Polyacetal Resins, Methylene Diplineylene Di-isocynates (MDI), Trimethylolpropane, Neopentylglycol.

Direct Use

Formaldehyde is also used directly for the following:
Mirror finishing and electroplating. Preservation and disinfection. Film development in photography industry

3 Objectives

1. To design a distillation column pertaining to the given industrial problem.

- Vessel Design
- Tower Internals

2. Designing of other equipment aiding the production of formaldehyde.

- Reboiler
- Condenser
- Heat Exchanger

3. To conduct an Order-of-the-Magnitude Cost Estimation Survey of the plant

4 Methodology

The design revolves around the production of formaldehyde from methanol. It acts as a synthesis baseline for many other chemical compounds including phenol formaldehyde, urea formaldehyde and melamine resin. The molecular weight, density, melting point, boiling point, and heat capacities are taken in account to establish the mass and heat balance equations. This separation is done in a tray column for which different tray types will be analyzed. Some additional original data on semitechnical columns will also be analyzed and further utilized to attain the goal. After all these data acquisition, vapour-liquid equilibrium characteristics [17] (indicated by the shape of the equilibrium curve) of the mixture will determine the number of stages required for the separation. The number of trays required to achieve the given separation also depends upon the amount of reflux used. Using more reflux decreases the number of plates required and using less reflux increases the number of plates required. Also the tower internals will be designed according to the given operating conditions. Heat exchangers are also designed for optimum production with low wastage of energy.

Further the work may be extended to design other units along with this to achieve overall production of the chemical considered(formaldehyde).

5 Process Flow Diagram

Figure 2: Process Flow Diagram
The Process Flow Diagram showing the overall layout of the plant. The flowsheet has been prepared using Microsoft Visio [15].

6 Mass Balance \& Energy Balance

This is a full detailed chapter presenting the Mass Balance and Energy Balance for the projects plant of producing formaldehyde from methanol. The analysis and calculations were done manually.

6.1 Mass Balance

Mass Balance around the entire plant was carried out. All required parameters from the problem statement including; conversion, selectivity, temperature, pressure and production capacity were implemented in the mass balance. The following process flow diagram (PFD) of the formaldehyde plant is the reference for unit designation and stream numbering. The methanol feed input is the basis of calculation throughout the chapter. The amount of input basis of methanol was $n_{3}=10 \mathrm{kmol} / \mathrm{hr}$.

Information provided in the statement problem:

- Overall conversion of methanol: 0.874
- Selectivity of desired reaction to undesired reaction $=9$
- Production of formaldehyde needed $=60000$ ton per year
- The inlet temperature to the reactor 343 C
- The outlet temperature from the reactor 200 C
- Recycled temperature and pressure is 68.3 C and 1.2 atm respectively.
- Pressure of the absorber is 138 KPa with formaldehyde absorption recovery of 99%.
- Exist liquid stream from absorber is heated to 102 C.

Definitions of all abbreviations used in our calculations:

- N: Molar flow-rate (Kmol/hr.)
- M : Methanol
- W: Water
- H_{2} : hydrogen
- N_{2} : nitrogen
- F : Formaldehyde
- O_{2} : Oxygen
- χ, y : Mole fraction
- ξ_{1} : Moles of Formaldehyde formed in reaction 1

$$
\mathrm{CH}_{3} \mathrm{OH}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}
$$

- ξ_{2} : Moles of Formaldehyde formed in reaction 2, Side Reaction

$$
\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}
$$

- N_{M} : Methanol flow rate, similarly for the rest components.

6.1.1 First Run

- Mass Balance around the Reactor

A heated mixture of Methanol and air (N8) is sent to the reactor at 343 C. Two reactions occur:

$$
\mathrm{CH}_{3} \mathrm{OH}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}
$$

Desired Reaction

$$
\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}
$$

Figure 3: Mass Balance around the Reactor

After the reaction, we will get stream N9 which is a mixture of unreacted methanol and oxygen, Formaldehyde, Hydrogen and Inert nitrogen. We are considering all the oxygen gets consumed in the reaction.
Applying Material Balance:

$$
\begin{gather*}
N_{M 9}=N_{M 8}-\xi_{1}-\xi_{2} \tag{1}\\
N_{O_{2} 9}=N_{O_{2} 8}-0.5 \xi_{1} \tag{2}\\
N_{H_{2} 9}=\xi_{2} \tag{3}\\
N_{H_{2} O 9}=\xi_{1} \tag{4}\\
N_{F 9}=\xi_{1}+\xi_{2} \tag{5}
\end{gather*}
$$

Now, conversion is 0.874 and selectivity is 9 .
From (1) :

$$
\begin{gather*}
\frac{N_{M 8}-N_{M 9}}{N_{M 8}}=\frac{\xi_{1}+\xi_{2}}{10}=0.874 \\
\xi_{1}+\xi_{2}=10 * 0.874=8.74 \tag{6}
\end{gather*}
$$

Selectivity $=9$
Therefore,

$$
\begin{equation*}
\frac{\xi_{1}}{\xi_{2}}=9 \tag{7}
\end{equation*}
$$

Solving (6) and (7) :

$$
\begin{aligned}
& \xi_{1}=7.866 \mathrm{kmol} / \mathrm{hr} \\
& \xi_{2}=0.874 \mathrm{kmol} / \mathrm{hr}
\end{aligned}
$$

Thus,

$$
\begin{gathered}
N_{M 9}=10-7.866-0.894=1.26 \mathrm{kmol} / \mathrm{hr} \\
N_{O_{2} 8}=0.5 * 7.866=3.933 \mathrm{kmol} / \mathrm{hr} \\
N_{N_{2} 8}=N_{N_{2} 9}=\frac{N_{O_{2} 8}}{0.21} * 0.79=14.796 \mathrm{kmol} / \mathrm{hr} \\
N_{H_{2} 9}=\xi_{2}=0.874 \mathrm{kmol} / \mathrm{hr} \\
N_{H_{2} \mathrm{O} 9}=\xi_{1}=7.866 \mathrm{kmol} / \mathrm{hr} \\
N_{F 9}=\xi_{1}+\xi_{2}=8.74 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Total Moles $=N_{M 8}+N_{O_{2} 8}+N_{N_{2} 8}=10+3.933+14.796=28.729 \mathrm{kmol} / \mathrm{hr}$
Mole Fractions:

$$
\begin{aligned}
& \chi_{M 8}=\frac{10}{28.729}=0.3481 \\
& \chi_{O_{2} 8}=\frac{3.933}{28.729}=0.1361 \\
& \chi_{N_{2} 8}=\frac{14.796}{28.729}=0.515
\end{aligned}
$$

Composition of Stream 9:

Total Moles $=N_{M 9}+N_{F 9}+N_{H_{2} 9}+N_{N_{2} 9}+N_{H_{2} O 9}$

$$
=1.26+8.74+0.874+14.796+7.866=35.536 \mathrm{kmol} / \mathrm{hr}
$$

Mole Fractions:

$$
\begin{gathered}
\chi_{M 9}=\frac{1.26}{33.536}=0.0375 \\
\chi_{F 9}=\frac{8.74}{33.536}=0.261 \\
\chi_{H_{2} 9}=\frac{0.874}{33.536}=0.0261 \\
\chi_{N_{2} 9}=\frac{14.796}{33.536}=0.441 \\
\chi_{H_{2} O 9}=\frac{7.866}{33.536}=0.234
\end{gathered}
$$

- Mass Balance around the Absorber

Stream N9 after throttling becomes N10 (165 C). It goes to the absorber where the recovery of Formaldehyde is 99%. The solvent used is pure water (N11) at 14 C . It absorbs all the methanol and 99 \% Formaldehyde. The solubility of formaldehyde and methanol in water is evaluated at 89.5 C (Average of the two incoming streams). Solubility of Formaldehyde at 89.5 $\mathrm{C}=0.78 \mathrm{~kg}$ Formaldehyde in 1 kg water

In kmol Formaldehyde per kmol water units:

This means 0.468 kmol of formaldehyde gets absorbed by 1 kmol of water. Hence, to absorb 99% of $8.74 \mathrm{kmol} / \mathrm{hr}$ (from stream 10) of Formaldehyde we require $=\frac{8.74}{0.468}=18.675 \mathrm{kmolwater} / \mathrm{hr}$

Threfore $N 11$ (Minimum) $=18.675 \mathrm{kmol} / \mathrm{hr}$ Now, Solubility of Methanol at 89.5 C is 0.20259 kmol Methanol $/ \mathrm{kmol}$ of water
For 18.675 Kmol of Water/hr, Methanol absorbed $=0.20259 * 18.675=3.78 \mathrm{Kmol} / \mathrm{hr}$.

Figure 4: Mass Balance around the Absorber

Therefore, all methanol will get absorbed by $\mathrm{N} 11(18.675 \mathrm{Kmol} / \mathrm{hr})$. All Methanol will dissolve in water and NO Methanol in the off-gas. Therefore, Stream 12 will contain methanol, formaldehyde, Nitrogen and water.

$$
\begin{gathered}
N_{N_{2} 12}=N_{N_{2} 10}=14.796 \mathrm{kmol} / \mathrm{hr} \\
N_{H_{2} 12}=N_{H_{2} 10}=0.874 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

$N_{F 12}=N_{F_{1} 0} * 0.01=0.0874 \mathrm{kmol} / \mathrm{hr}$ (Amount of Formaldehyde not absorbed) For water, Assuming Raoults Law to be applicable:

$$
y_{H_{2} O, 12}=\frac{P^{\text {vapor }}(89.5 C)}{P^{\text {Total }}}
$$

Vapor Pressure of Water at 89.5 (From Antoines Equation):

$$
\begin{aligned}
& P^{v a p o r}=\exp \left[16.3872-\frac{3885.7}{89.5+230.17}\right]=68.8 \mathrm{kPa} \\
& y_{\mathrm{H}_{2} \mathrm{O}}=\frac{68.8}{138}=0.496
\end{aligned}
$$

The amount of water going to the vapour phase (N12) will be 0.496 of the total moles of water present in the absorber. Therefore,

$$
N_{\mathrm{H}_{2} \mathrm{O}, 12}=(18.675+7.866) * 0.498=13.164 \mathrm{kmol} / \mathrm{hr}
$$

Hence, $N_{\mathrm{H}_{2} \mathrm{O}, 13}=(18.675+7.866)-13.164=13.378 \mathrm{kmol} / \mathrm{hr}$
Also,

$$
N_{M 13}=1.26 \mathrm{kmol} / \mathrm{hr}
$$

$N_{F 13}=0.99 * 8.74=8.6526 \mathrm{kmol} / \mathrm{hr}$ (All the methanol goes to N13)
Total number of moles in Stream 12: $N_{F 12}+N_{N_{2} 12}+N_{H_{2} 12}+N_{2} O, 12$

$$
=0.0874+14.796+0.874+13.164=28.9214 \mathrm{kmol} / \mathrm{hr}
$$

Total number of moles in Stream 13: $N_{F 13}+N_{M 13}+N_{H_{2} \mathrm{O}, 13}$

$$
=8.6526+1.26+13.378=23.29 \mathrm{kmol} / \mathrm{hr}
$$

Composition of Stream N10 (Gas Inlet Stream):

Total Moles $=33.536 \mathrm{kmol} / \mathrm{hr}$ (Same as N9)

$$
\begin{gathered}
\chi_{M 10}=\frac{1.26}{33.536}=0.0375 \\
\chi_{F 10}=\frac{8.74}{33.536}=0.261 \\
\chi_{H_{2} 10}=\frac{0.874}{33.536}=0.0261 \\
\chi_{N_{2} 10}=\frac{14.796}{33.536}=0.441 \\
\chi_{H_{2} O 10}=\frac{7.866}{33.536}=0.234
\end{gathered}
$$

Composition of Stream N11 (Liquid Inlet Stream):

Total Moles $=18.675 \mathrm{kmol} / \mathrm{hr}$
Mole Fraction=1 (Pure)
Composition of Stream N12 (Gas Outlet Stream):
Total Moles $=28.9214 \mathrm{kmol} / \mathrm{hr}$

$$
\begin{gathered}
\chi_{F 12}=\frac{0.0874}{28.9214}=0.003022 \\
\chi_{N_{2} 12}=\frac{14.796}{28.9214}=0.511 \\
\chi_{H_{2} 12}=\frac{0.874}{28.9214}=0.302
\end{gathered}
$$

$$
\chi_{\mathrm{H}_{2} \mathrm{O} 12}=\frac{13.164}{28.9214}=0.455
$$

Composition of Stream N13 (Liquid Outlet Stream):

Total Moles $=23.29 \mathrm{kmol} / \mathrm{hr}$

$$
\begin{gathered}
\chi_{F 13}=\frac{8.6526}{23.29}=0.371 \\
\chi_{M 13}=\frac{1.24}{23.29}=0.0541 \\
\chi_{H_{2} O 13}=\frac{13.378}{23.29}=0.574
\end{gathered}
$$

- Mass Balance around the Distillation Column

The stream liquid stream N13 coming out of the absorber is preheated (becomes N14, composition is considered to be same) to be fed to the Distillation Column at 102 C . Some of the assumptions made are the methanol is considered to be the Light-key component and water as the Heavy-Key Component. The fractional recovery of methanol is 99.7% (In Distillate) and that of water is 99% (Present in the Bottom with the Formaldehyde). Remaining amounts of the methanol and water goes to the bottom and distillate respectively.

Distillate, $D=N 15$
Bottom, $B=N 17$
Now,

$$
\begin{gathered}
D_{M}=0.997 * \text { Moles of Methanol Present in } N 14 \\
D_{M}=0.997 * 1.26=1.25622 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Hence, $B_{M}=1.26-1.25622=0.0038 \mathrm{kmol} / \mathrm{hr}$ Now, calculation for the bottom

$$
B_{\mathrm{H}_{2} \mathrm{O}}=0.99 * \text { Moles of Water present in } N 14
$$

Hence, $D_{H_{2} \mathrm{O}}=13.378-13.244=0.1338 \mathrm{kmol} / \mathrm{hr}$

$$
B_{F}=\text { Same as N14 }=8.6526 \mathrm{kmol} / \mathrm{hr}
$$

Total Distillate N15 $=D_{M}+D_{\mathrm{H}_{2} \mathrm{O}}$

$$
=1.25622+0.1338=1.39 \mathrm{kmol} / \mathrm{hr}
$$

Mole Fractions:

$$
\begin{aligned}
& y_{M}=\frac{1.25622}{1.39}=0.903 \\
& y_{H_{2} O}=\frac{0.1338}{1.369}=0.096
\end{aligned}
$$

Total Bottom N17 $=B_{F}+B_{H_{2} \mathrm{O}}+B_{M}$

$$
=8.6526+13.244+0.0038=21.9 \mathrm{kmol} / \mathrm{hr}
$$

Figure 5: Mass Balance around the Distillation Column

Mole Fractions:

$$
\begin{gathered}
\chi_{F}=\frac{8.6526}{21.9}=0.395 \\
\chi_{H_{2} O}=\frac{13.244}{21.9}=0.604 \\
\chi_{M}=\frac{0.0038}{21.9}=0.000173
\end{gathered}
$$

In the bottom, to find the mass fraction of Formaldehyde (Methanol is present in a very low quantity, therefore it can be considered as a mixture of Formaldehyde in water). The composition of the Bottom Stream is given in Table 4.
Total Mass in Bottom Stream $=259.80+238.392+0.1217=498.31 \mathrm{~kg}$
The mass percent of formaldehyde formed is around 52.1%.

Table 4: Composition of Bottom Stream(First Run)

Component	Moles (n)	Molecular Weight (M)	Mass (n*M)	Mass Fraction
Formaldehyde	8.6526	30	259.80	0.521
Water	13.244	18	238.392	0.478
Methanol	0.0038	32.042	0.1217	0.000244

6.1.2 Second Run

For the second run, we are considering the recycle stream N15, coming from the Distillation Column and mixing it with fresh Methanol Stream N2. The input basis for methanol is still $10 \mathrm{kmol} / \mathrm{hr}$ in Stream N3.

- Mass balance around mixing point of streams 2, 3 and 15:

Now the recycle stream N15 is mixed with the pure Methanol stream N2 to keep the total input of methanol to the reactor be $10 \mathrm{kmol} / \mathrm{hr}$. Thus, on applying mass balance on mixing tee for streams, 2, 3 and 15 , we get

$$
\begin{gathered}
N_{M 3}=N_{M 15}+N_{M 2} \\
N_{M 2}=N_{M 3}-N_{M 15}=10-1.25622=8.74378 \mathrm{kmol} / \mathrm{hr} \\
N_{H_{2} \mathrm{O} 3}=0.1338 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Therefore Total moles now in stream $N 3=10+0.1338=10.1338 \mathrm{kmol} / \mathrm{hr}$

- Mass balance around mixing point of streams 6, 7 and 8:

Composition of N6=Composition of N3

$$
\begin{aligned}
\chi_{M 3} & =\chi_{M 6}=\frac{10}{10.1338}=0.9868 \\
\chi_{H_{2} 03} & =\chi_{H_{2} 06}=\frac{0.1338}{10.1338}=0.0132
\end{aligned}
$$

From first run, we got

$$
\begin{gathered}
N_{O_{2} 1}=0.5 * 7.866=3.933 \mathrm{kmol} / \mathrm{hr} \\
N_{N_{2} 1}=\frac{N_{O_{2} 8}}{0.21} * 0.79=14.796 \mathrm{kmol} / \mathrm{hr} \\
N_{7}=N_{5}=N_{1}=N_{O_{2} 1}+N_{N_{2} 1}=3.933+14.796=18.729 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Total Number of Moles in stream $N_{8}=$ Moles in $N_{6}+$ Moles in N_{7}

$$
=10.13387+18.729=28.863 \mathrm{kmol} / \mathrm{hr}
$$

- Mass Balance around the Reactor

The feed to the reactor is stream N8 $(28.863 \mathrm{kmol} / \mathrm{hr})$ at 343 C .
Composition:

$$
\begin{gathered}
N_{M}=10 \mathrm{kmol} / \mathrm{hr} \\
N_{\mathrm{H}_{2} \mathrm{O}}=0.1338 \mathrm{kmol} / \mathrm{hr} \\
N_{\mathrm{O}_{2}}=3.933 \mathrm{kmol} / \mathrm{hr} \\
N_{N_{2}}=14.796 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Since the conversion and the selectivity is the same and the amount of methanol entering is also same, thus the composition of Formaldehyde, hydrogen, nitrogen, unreacted Methanol will remain the same.

Only the water composition will change.

$$
N_{H_{2} 09}(\text { SecondRun })=0.1338+\xi_{1}=0.1338+7.866=7.999 \mathrm{kmol} / \mathrm{hr}
$$

- Mass Balance around the Absorber

The feed to the absorber is Stream N10 at 165 C and 138 kPa .

$$
N_{F 10}(\text { SecondRun })=N_{F 10}(\text { FirstRun })=8.74 \mathrm{kmol} / \mathrm{hr}
$$

Solubility of Formaldehyde at $89.5 \mathrm{C}=0.78 \mathrm{~kg}$ Formaldehyde in 1 kg water
In kmol Formaldehyde per kmol water units:
$=\frac{\frac{0.78 \mathrm{kgformalde} \mathrm{fyde}}{30.02}}{\frac{1 \mathrm{kgwater}}{18}}=0.468 \mathrm{kmol}$ formaldehyde $/ \mathrm{kmolwater}$
This means 0.468 kmol of formaldehyde gets absorbed by 1 kmol of water. Hence, to absorb 99% of $8.74 \mathrm{kmol} / \mathrm{hr}$ (from stream 10) of Formaldehyde we require $=\frac{8.74}{0.468}=18.675 \mathrm{kmolwater} / \mathrm{hr}$

Threfore $N 11$ (Minimum, Second Run) $=18.675 \mathrm{kmol} / \mathrm{hr}$ Now, Solubility of Methanol at 89.5 C is 0.20259 kmol Methanol $/ \mathrm{kmol}$ of water

For 18.675 Kmol of Water/hr, Methanol absorbed $=0.20259 * 18.675=3.78 \mathrm{Kmol} / \mathrm{hr}$.
Therefore, all methanol will get absorbed by $\mathrm{N} 11(18.675 \mathrm{Kmol} / \mathrm{hr})$. All Methanol will dissolve in water and NO Methanol in the off-gas. Therefore, Stream 12 will contain methanol, formaldehyde, Nitrogen and water.

$$
\begin{gathered}
N_{N_{2} 12}=N_{N_{2} 10}=14.796 \mathrm{kmol} / \mathrm{hr} \\
N_{\mathrm{H}_{2} 12}=N_{\mathrm{H}_{2} 10}=0.874 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

$N_{F 12}=N_{F_{1} 0} * 0.01=0.0874 \mathrm{kmol} / \mathrm{hr}$ (Amount of Formaldehyde not absorbed)
For water, Assuming Raoults Law to be applicable:

$$
y_{H_{2} O, 12}=\frac{P^{\text {vapor }}(89.5 C)}{P^{\text {Total }}}
$$

Vapor Pressure of Water at 89.5 (From Antoines Equation):

$$
\begin{gathered}
P^{v a p o r}=\exp \left[16.3872-\frac{3885.7}{89.5+230.17}\right]=68.8 \mathrm{kPa} \\
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{68.8}{138}=0.496
\end{gathered}
$$

The amount of water going to the vapour phase (N12) will be 0.496 of the total moles of water present in the absorber. Therefore,

$$
N_{\mathrm{H}_{2} \mathrm{O}, 12}=(18.675+7.999) * 0.498=13.23 \mathrm{kmol} / \mathrm{hr}
$$

Hence, $N_{\mathrm{H}_{2} \mathrm{O}, 13}=(18.675+7.999)-13.23=13.44 \mathrm{kmol} / \mathrm{hr}$
Also,

$$
N_{M 13}=1.26 \mathrm{kmol} / \mathrm{hr}
$$

$N_{F 13}=0.99 * 8.74=8.6526 \mathrm{kmol} / \mathrm{hr}$ (All the methanol goes to N13) Total number of moles in Stream 12 (Second Run):

$$
\begin{gathered}
=N_{F 12}+N_{N_{2} 12}+N_{H_{2} 12}+N_{2} O, 12 \\
=0.0874+14.796+0.874+13.23=28.98 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Total number of moles in Stream 13 (Second Run):

$$
\begin{gathered}
=N_{F 13}+N_{M 13}+N_{H_{2} \mathrm{O}, 13} \\
=8.6526+1.26+13.44=23.358 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

- Mass Balance around the Distillation Column

Distillate $D=N 15$
Bottom $B=N 17$
Now, $D_{M}=0.997 *$ Moles of Methanol Present in N14

$$
D_{M}=0.997 * 1.26=1.25622 \mathrm{kmol} / \mathrm{hr}
$$

hence, $B_{M}=1.26-1.25622=0.0038 \mathrm{kmol} / \mathrm{hr}$
Now, calculation for the bottom
$B_{\mathrm{H}_{2} \mathrm{O}}=0.99 *$ Moles of Water present inN14

$$
B_{\mathrm{H}_{2} \mathrm{O}}=0.99 * 13.44=13.31 \mathrm{kmol} / \mathrm{hr}
$$

Hence, $D_{\mathrm{H}_{2} \mathrm{O}}=13.44-13.31=0.13 \mathrm{kmol} / \mathrm{hr}$
$B_{F}=$ Same as $N 14=8.6526 \mathrm{kmol} / \mathrm{hr}$

Table 5: Composition of Bottom Stream(Second Run)

Component	Moles (n)	Molecular Weight (M)	Mass (n*M)	Mass Fraction
Formaldehyde	8.6526	30	259.80	0.52
Water	13.31	18	239.58	0.479
Methanol	0.0038	32.042	0.1217	0.000243

Total Distillate N15 $=D_{M}+D_{\mathrm{H}_{2} \mathrm{O}}$

$$
=1.25622+0.13=1.38622 \mathrm{kmol} / \mathrm{hr}
$$

Mole Fractions:

$$
\begin{aligned}
& y_{M}=\frac{1.25622}{1.38622}=0.9062 \\
& y_{H_{2} O}=\frac{0.1338}{1.38622}=0.095
\end{aligned}
$$

Total Bottom N17 $=B_{F}+B_{H_{2} \mathrm{O}}+B_{M}$

$$
=8.6526+13.31+0.0038=21.9664 \mathrm{kmol} / \mathrm{hr}
$$

Mole Fractions:

$$
\begin{gathered}
\chi_{F}=\frac{8.6526}{21.9664}=0.393 \\
\chi_{H_{2} O}=\frac{13.31}{21.9664}=0.605 \\
\chi_{M}=\frac{0.0038}{21.9664}=0.000172
\end{gathered}
$$

In the bottom, to find the mass fraction of Formaldehyde (Methanol is present in a very low quantity, therefore it can be considered as a mixture of Formaldehyde in water). The composition of the Bottom Stream is given in Table 5.
Total Mass in Bottom Stream $=259.80+239.58+0.1217=499.5 \mathrm{~kg}$
The mass percent of formaldehyde formed is around 52%.

- Mass Balance around Stream N17, N18 and N19:

$$
M_{F 17}=\frac{259.8 \mathrm{~kg} / \mathrm{hr} \text { of formaldehyde }}{499.5 \mathrm{~kg} \text { solution }}
$$

Let M_{18} be $\times k g H_{2} O / h r$
Now, for $M_{19}=37 w t \%$ of formaldehyde

$$
\begin{aligned}
& \frac{259.8}{499.5+x}=0.37 \\
x= & 202.66 \mathrm{~kg} \text { of } \mathrm{H}_{2} \mathrm{O} / \mathrm{hr}
\end{aligned}
$$

6.2 Material Balance Data Sheets

1. Initial Mass Balance (before scaling) on 10 kmol Methanol/hour basis:

On the basis of the material balance calculations done before, following data was obtained.

Table 6: Mass Balance Data sheet (before Scaling) on 10 kmol Methanol /hr basis

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	3.933	0	0	0	14.796	18.729
$\mathbf{2}$	8.7466	0	0	0	0	0	8.7466
$\mathbf{3}$	10	0	0	0.13378	0	0	10.13378
$\mathbf{4}$	10	0	0	0.13378	0	0	10.13378
$\mathbf{5}$	0	3.933	0	0	0	14.796	18.729
$\mathbf{6}$	10	0	0	0.13378	0	0	10.13378
$\mathbf{7}$	0	3.933	0	0	0	14.796	18.729
$\mathbf{8}$	10	3.933	0	0.13378	0	14.796	28.86278
$\mathbf{9}$	1.26	0	8.74	7.866	0.874	14.796	33.66978
$\mathbf{1 0}$	1.26	0	8.74	7.866	0.874	14.796	33.66978
$\mathbf{1 1}$	0	0	0	18.675	0	0	18.675
$\mathbf{1 2}$	0	0	0.0874	13.23	0.874	14.796	28.9874
$\mathbf{1 3}$	1.26	0	8.6526	13.445	0	0	23.3576
$\mathbf{1 4}$	1.26	0	8.6526	13.445	0	0	23.3576
$\mathbf{1 5}$	1.25755	0	0	0.13454	0	0	1.39209
$\mathbf{1 6}$	0.0038	0	8.6526	13.3197	0	0	21.966
$\mathbf{1 7}$	0.0038	0	8.6526	13.3197	0	0	21.966
$\mathbf{1 8}$	0	0	0	11.16667	0	0	11.16667
$\mathbf{1 9}$	0.0038	0	8.6526	24.48637	0	0	33.13267
$\mathbf{2 0}$	0.0038	0	8.6526	24.48637	0	0	33.13267

2. Mass Balance(before scaling) on $\mathrm{kg} / \mathrm{hr}$ unit:

Each of the component in each of the stream is divided by its molecular weight to get its composition on $\mathrm{kg} / \mathrm{hr}$ basis. Molecular weights of the components are as follows:
Methanol $=32 \mathrm{~kg} / \mathrm{kmol}$
Oxygen $=32 \mathrm{~kg} / \mathrm{kmol}$
Formaldehyde $=30 \mathrm{~kg} / \mathrm{kmol}$
Water $=18 \mathrm{~kg} / \mathrm{kmol}$
Hydrogen $=2 \mathrm{~kg} / \mathrm{kmol}$
Nitrogen $=28 \mathrm{~kg} / \mathrm{kmol}$

Table 7: Mass Balance Data sheet (before Scaling) on $\mathrm{kg} / \mathrm{hr}$ basis

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	125.856	0	0	0	414.288	540.144
$\mathbf{2}$	279.8912	0	0	0	0	0	279.8912
$\mathbf{3}$	320	0	0	2.40804	0	0	322.408
$\mathbf{4}$	320	0	0	2.40804	0	0	322.408
$\mathbf{5}$	0	125.856	0	0	0	414.288	540.144
$\mathbf{6}$	320	0	0	2.40804	0	0	322.408
$\mathbf{7}$	0	125.856	0	0	0	414.288	540.144
$\mathbf{8}$	320	125.856	0	2.40804	0	414.288	862.552
$\mathbf{9}$	40.32	0	262.2	141.588	1.748	414.288	860.144
$\mathbf{1 0}$	40.32	0	262.2	141.588	1.748	414.288	860.144
$\mathbf{1 1}$	0	0	0	336.15	0	0	336.15
$\mathbf{1 2}$	0	0	2.622	238.14	1.748	414.288	656.798
$\mathbf{1 3}$	40.32	0	259.578	242.01	0	0	541.908
$\mathbf{1 4}$	40.32	0	259.578	242.01	0	0	541.908
$\mathbf{1 5}$	40.2416	0	0	2.42172	0	0	42.66332
$\mathbf{1 6}$	0.1216	0	259.578	239.7546	0	0	499.1512
$\mathbf{1 7}$	0.1216	0	259.578	239.7546	0	0	499.1512
$\mathbf{1 8}$	0	0	0	201.0001	0	0	201.0001
$\mathbf{1 9}$	0.1216	0	259.578	440.7547	0	0	700.1513
$\mathbf{2 0}$	0.1216	0	259.578	440.7547	0	0	700.1513

3. Mass Balance (before scaling) on ton/year mass unit:

The calculations made in the above table was in $\mathrm{kg} / \mathrm{hr}$ basis it is converted to tonnes per year by multiplying by 8.76 as

$$
\begin{aligned}
1 \mathrm{~kg} / \mathrm{hr} & =365 * \frac{24}{1000} \text { tons } / \text { year } \\
& =8.76 \text { tons } / \text { year }
\end{aligned}
$$

Table 8: Mass Balance Data Sheet (before scaling) on ton/year mass unit

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	1102.499	0	0	0	3629.163	4731.661
$\mathbf{2}$	2451.847	0	0	0	0	0	2451.847
$\mathbf{3}$	2803.2	0	0	21.09443	0	0	2824.294
$\mathbf{4}$	2803.2	0	0	21.09443	0	0	2824.294
$\mathbf{5}$	0	1102.499	0	0	0	3629.163	4731.661
$\mathbf{6}$	2803.2	0	0	21.09443	0	0	2824.294
$\mathbf{7}$	0	1102.499	0	0	0	3629.163	4731.661
$\mathbf{8}$	2803.2	1102.499	0	21.09443	0	3629.163	7555.956
$\mathbf{9}$	353.2032	0	2296.872	1240.311	15.31248	3629.163	7534.861
$\mathbf{1 0}$	353.2032	0	2296.872	1240.311	15.31248	3629.163	7534.861
$\mathbf{1 1}$	0	0	0	2944.674	0	0	2944.674
$\mathbf{1 2}$	0	0	22.96872	2086.106	15.31248	3629.163	5753.55
$\mathbf{1 3}$	353.2032	0	2273.903	2120.008	0	0	4747.114
$\mathbf{1 4}$	353.2032	0	2273.903	2120.008	0	0	4747.114
$\mathbf{1 5}$	352.5164	0	0	21.21427	0	0	373.7307
$\mathbf{1 6}$	1.065216	0	2273.903	2100.25	0	0	4372.565
$\mathbf{1 7}$	1.065216	0	2273.903	2100.25	0	0	4372.565
$\mathbf{1 8}$	0	0	0	1760.761	0	0	1760.761
$\mathbf{1 9}$	1.065216	0	2273.903	3861.011	0	0	6133.325
$\mathbf{2 0}$	1.065216	0	2273.903	3861.011	0	0	6133.325

4. Mass Balance (after scaling) on ton/year mass unit:

Since the production capacity was fixed to be 60000 tons per year, the mass flow rate of stream 20 should be 60000 tonnes/year. Therefore, each of the components mass flow rate has been scaled up to meet the above requirement.

Table 9: Mass Balance Data Sheet (after scaling) on ton/year mass unit

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	10785.33	0	0	0	35502.73	46288.06
$\mathbf{2}$	23985.49	0	0	0	0	0	23985.49
$\mathbf{3}$	27422.65	0	0	206.3588	0	0	27629
$\mathbf{4}$	27422.65	0	0	206.3588	0	0	27629
$\mathbf{5}$	0	10785.33	0	0	0	35502.73	46288.06
$\mathbf{6}$	27422.65	0	0	206.3588	0	0	27629
$\mathbf{7}$	0	10785.33	0	0	0	35502.73	46288.06
$\mathbf{8}$	27422.65	10785.33	0	206.3588	0	35502.73	73917.06
$\mathbf{9}$	3455.253	0	22469.43	12133.49	149.7962	35502.73	73710.7
$\mathbf{1 0}$	3455.253	0	22469.43	12133.49	149.7962	35502.73	73710.7
$\mathbf{1 1}$	0	0	0	28806.63	0	0	28806.63
$\mathbf{1 2}$	0	0	224.6943	20407.59	149.7962	35502.73	56284.81
$\mathbf{1 3}$	3455.253	0	22244.74	20739.23	0	0	46439.22
$\mathbf{1 4}$	3455.253	0	22244.74	20739.23	0	0	46439.22
$\mathbf{1 5}$	3448.535	0	0	207.5312	0	0	3656.066
$\mathbf{1 6}$	10.42061	0	22244.74	20545.95	0	0	42775.15
$\mathbf{1 7}$	10.42061	0	22244.74	20545.95	0	0	42775.15
$\mathbf{1 8}$	0	0	0	17224.85	0	0	17224.85
$\mathbf{1 9}$	10.42061	0	22244.74	37770.81	0	0	60000
$\mathbf{2 0}$	10.42061	0	22244.74	37770.81	0	0	60000

5. Mass Balance (after scaling) on $\mathrm{kg} / \mathrm{hr}$ mass unit:

After we scaled up each of the components mass flow rate, we got all the data in tons per year. For the energy balance calculations, each of the mass flow rates are converted to $\mathrm{kg} / \mathrm{hr}$.

Table 10: Mass Balance Data Sheet (after scaling) on $\mathrm{kg} / \mathrm{hr}$ mass unit

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	1231.202	0	0	0	4052.823	5284.025
$\mathbf{2}$	2738.07	0	0	0	0	0	2738.07
$\mathbf{3}$	3130.439	0	0	23.55695	0	0	3153.996
$\mathbf{4}$	3130.439	0	0	23.55695	0	0	3153.996
$\mathbf{5}$	0	1231.202	0	0	0	4052.823	5284.025
$\mathbf{6}$	3130.439	0	0	23.55695	0	0	3153.996
$\mathbf{7}$	0	1231.202	0	0	0	4052.823	5284.025
$\mathbf{8}$	3130.439	1231.202	0	23.55695	0	4052.823	8438.021
$\mathbf{9}$	394.4353	0	2565.003	1385.102	17.10002	4052.823	8414.464
$\mathbf{1 0}$	394.4353	0	2565.003	1385.102	17.10002	4052.823	8414.464
$\mathbf{1 1}$	0	0	0	3288.428	0	0	3288.428
$\mathbf{1 2}$	0	0	25.65003	2329.634	17.10002	4052.823	6425.207
$\mathbf{1 3}$	394.4353	0	2539.353	2367.492	0	0	5301.281
$\mathbf{1 4}$	394.4353	0	2539.353	2367.492	0	0	5301.281
$\mathbf{1 5}$	393.6684	0	0	23.69077	0	0	417.3591
$\mathbf{1 6}$	1.189567	0	2539.353	2345.429	0	0	4883.007
$\mathbf{1 7}$	1.189567	0	2539.353	2345.429	0	0	4883.007
$\mathbf{1 8}$	0	0	0	1966.308	0	0	1966.308
$\mathbf{1 9}$	1.189567	0	2539.353	4311.736	0	0	6849.315
$\mathbf{2 0}$	1.189567	0	2539.353	4311.736	0	0	6849.315

6. Mass Balance (after scaling) on $\mathrm{kmol} / \mathrm{hr}$ mass unit:

We have also converted all the mass flow rates to molar flow rates by dividing them by their corresponding molecular weights.

Table 11: Mass Balance Data Sheet (after scaling) on $\mathrm{kmol} / \mathrm{hr}$ mass unit

Stream No	Methanol	Oxygen	Formaldehyde	Water	Hydrogen	Nitrogen	Sum
$\mathbf{1}$	0	38.47505	0	0	0	144.7437	183.2187
$\mathbf{2}$	85.56468	0	0	0	0	0	85.56468
$\mathbf{3}$	97.82622	0	0	1.308719	0	0	99.13494
$\mathbf{4}$	97.82622	0	0	1.308719	0	0	99.13494
$\mathbf{5}$	0	38.47505	0	0	0	144.7437	183.2187
$\mathbf{6}$	97.82622	0	0	1.308719	0	0	99.13494
$\mathbf{7}$	0	38.47505	0	0	0	144.7437	183.2187
$\mathbf{8}$	97.82622	38.47505	0	1.308719	0	144.7437	282.3537
$\mathbf{9}$	12.3261	0	85.50012	76.9501	8.550012	144.7437	328.07
$\mathbf{1 0}$	12.3261	0	85.50012	76.9501	8.550012	144.7437	328.07
$\mathbf{1 1}$	0	0	0	182.6905	0	0	182.6905
$\mathbf{1 2}$	0	0	0.855001	129.4241	8.550012	144.7437	283.5728
$\mathbf{1 3}$	12.3261	0	84.64511	131.5274	0	0	228.4986
$\mathbf{1 4}$	12.3261	0	84.64511	131.5274	0	0	228.4986
$\mathbf{1 5}$	12.30214	0	0	1.316154	0	0	13.61829
$\mathbf{1 6}$	0.037174	0	84.64511	130.3016	0	0	214.8851
$\mathbf{1 7}$	0.037174	0	84.64511	130.3016	0	0	214.8851
$\mathbf{1 8}$	0	0	0	109.2393	0	0	109.2393
$\mathbf{1 9}$	0.037174	0	84.64511	239.5409	0	0	324.1244
$\mathbf{2 0}$	0.037174	0	84.64511	239.5409	0	0	324.1244

6.3 Energy Balance

Energy balance refers to the calculation of heat duties and energy consumed for each plant component. It depends on calculating the heat capacity $\left(C_{P}\right)$ of each substance present in the system. Table 12 serves as reference to the upcoming calculations of the plants energy balance.[11]

Heat Capacity $C_{P}(\mathrm{~J} / \mathrm{kmol} . \mathrm{K})$ for liquid phase (for all compounds except Hydrogen) is calculated as per the following equation:

$$
C_{P}=C_{1}+C_{2} T+C_{3} T^{2}+C_{4} T^{3}+C_{5} T^{4}
$$

For Hydrogen in liquid state, following equation is used:

$$
C_{P}=\frac{C_{1}^{2}}{T}-C_{2}-2 C_{1} C_{3} T-C_{1} C_{4} T^{2}-C_{3}{ }^{\frac{2}{3}} T^{3}-\frac{C_{3} C_{4}}{2} T^{4}-C_{4}{ }^{\frac{2}{5}} T^{5}
$$

$T=1-t_{r}$ where t_{r} is the reduced temperature.
For ideal gas specific Heat calculation (for all the compounds except gaseous Hydrogen):

$$
C_{P}=C_{1}+C_{2}\left[\frac{\frac{C_{3}}{T}}{\sinh \frac{C_{3}}{T}}\right]^{2}+C_{4}\left[\frac{\frac{C_{5}}{T}}{\cosh \frac{C_{5}}{T}}\right]^{2}
$$

where T is in Kelvin.
For Hydrogen gas:

$$
C_{P}=C_{1}+C_{2} \ln T+\frac{C_{3}}{T}+C_{4} T
$$

Referring to Table 12 , all the heat capacities are calculated. The reference temperature is taken as 298.15 K (25 C) for all the calculations. Energy Balance is done for each individual component (Mixing Tees, Pumps, Heat Exchangers and Compressor along with Reactor, Absorber and Distillation Column).

Table 12: Coefficients for the calculation of Heat Capacity

Substance	Molecular Weight	Phase	C1	C2	C3	C4	C5	Tmin (K)	$\begin{gathered} \text { CP at } \\ \text { Tmin }(* E-05) \end{gathered}$	Tmax (K)	$\begin{gathered} \text { CP at } \\ \text { Tmax }\left({ }^{*} \mathrm{E}-05\right) \\ \hline \end{gathered}$
Methanol	32.042	Gas	$0.3925 \mathrm{E}+05$	$0.8790 \mathrm{E}+05$	$1.9165 \mathrm{E}+03$	$0.5365 \mathrm{E}+05$	896.7	200	0.3980	1500	1.0533
		$-3.6223 \mathrm{E}+02$	0.9379	0	0	175.47	0.7112	400	1.1097	400	1.1097
Formaldehyde	30.026	Gas	$0.3327 \mathrm{E}+05$	$0.4954 \mathrm{E}+05$	$1.8666 \mathrm{E}+03$	$0.2808 \mathrm{E}+05$	934.9	50	0.3327	1500	0.7113
		$2.83 \mathrm{E}+01$	0	0	0	204	0.6767	234	0.6852	234	0.6852
Oxygen	31.999	Gas	$0.2910 \mathrm{E}+05$	$0.1004 \mathrm{E}+05$	$2.5265 \mathrm{E}+03$	$0.0936 \mathrm{E}+05$	1153.8	50	0.2910	1500	0.3653
		$-6.1523 \mathrm{E}+03$	$1.1392 \mathrm{E}+02$	$-9.2382 \mathrm{E}-01$	$2.7963 \mathrm{E}-03$	54.36	0.5365	142	0.9066	142	0.9066
Nitrogen	28.014	Gas	$0.2911 \mathrm{E}+05$	$0.0861 \mathrm{E}+05$	$1.7016 \mathrm{E}+03$	$0.0010 \mathrm{E}+05$	909.79	50	0.2911	1500	0.3484
		$-1.2281 \mathrm{E}+04$	$2.4800 \mathrm{E}+02$	-2.218	$7.4902 \mathrm{E}-03$	63.15	0.5593	112	0.7960	112	0.7960
Water	18.015	Gas	$0.3336 \mathrm{E}+05$	$0.2679 \mathrm{E}+05$	$2.6105 \mathrm{E}+03$	$0.0890 \mathrm{E}+05$	1169	100	0.3336	2273.15	0.5276
		$-2.0901 \mathrm{E}+03$	8.1250	-1.4116E-02	$9.3701 \mathrm{E}-06$	273.16	0.7615	533.15	0.8939	533.15	0.8939
Hydrogen	2.016	Gas	$0.2762 \mathrm{E}+05$	$0.0956 \mathrm{E}+05$	$2.4660 \mathrm{E}+03$	0.0376	567.6	250	0.2843	1500	0.3225
		$6.7659 \mathrm{E}+03$	$-1.2363 \mathrm{E}+02$	$4.7827 \mathrm{E}+02$	0	13.95	0.1262	32	1.3122	32	1.3122

- Mixing Point between Stream 2, 15 and 3:

Energy coming in should be equal to the energy going out.

Stream 15 (Recycle)

Stream 2 (Pure Methanol)

```
T=25}\mp@subsup{}{}{\circ}\textrm{C},\textrm{P}=1\textrm{atm
n\mp@code{Methanol }}=85.56468\textrm{kmol
```

Figure 6: Mixing Point between Stream 2, 15 and 3

$$
\begin{gathered}
n_{2, \text { methanol }} \int_{298.15}^{298.15} C_{p, \text { methanol }} d T+n_{15, \text { water }} \int_{298.15}^{343.94} C_{p, \text { water }} d T+n_{15, \text { methanol }} \int_{298.15}^{343.94} C_{p, \text { methanol }} d T \\
=n_{3, \text { water }} \int_{298.15}^{T} C_{p, \text { water }} d T+n_{3, \text { methanol }} \int_{298.15}^{T} C_{p, \text { methanol }} d T
\end{gathered}
$$

Refer to Table 12 to get the respective values for $C_{1}, C_{2}, C_{3}, C_{4} a n d C_{5}$. We will use the liquid phase values as the compounds at the given pressure and temperature conditions are in liquid state.
Using MATLAB to solve the above equation [5], we get: $\mathrm{T}=302.8276 \mathrm{~K}$ (29.6776 C) The temperature of stream 3 is 29.6776 C .

- Pump 1

Mass Flow Rate (Stream 3):
Methanol $=3130.439 \mathrm{~kg} / \mathrm{hr}$
Water $=23.55695 \mathrm{~kg} / \mathrm{hr}$
Total $=3153.996 \mathrm{~kg} / \mathrm{hr}$
In mole fraction (Stream 3):

$$
\begin{gathered}
\chi_{\text {methanol }}=\frac{97.82622}{99.13494}=0.9867 \\
\chi_{\text {water }}=\frac{1.308719}{99.13494}=0.0133
\end{gathered}
$$

Using Dortmund Data Bank (DIPPR105 EQN) [1]:
At 302.8276K,

$$
\begin{gathered}
\rho_{\text {methanol }}=784.34 \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{\text {water }}=996.505 \mathrm{~kg} / \mathrm{m}^{3} \\
\rho_{\text {mix }}=\sum \rho_{i} \chi_{i}=786.95 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Now, $P($ in $), P 1=1$ atm $=101325 P a$

$$
P(\text { out }), P 2=3 a t m=303975 \mathrm{~Pa}
$$

In a pump, generally suction velocity $\left(v_{1}\right)=$ Discharge velocity $\left(v_{2}\right)$.
Applying Bernoullis Equation:

$$
\frac{P_{1}}{\rho g}+\alpha \frac{v_{1}^{2}}{2 g}+z_{1}+W_{p u m p}=\frac{P_{2}}{\rho g}+\alpha \frac{v_{2}^{2}}{2 g}+z_{2}+\mathrm{losses}
$$

Also $z_{1}=z_{2}$
Assuming no losses, we get $W_{\text {pump }}$ as:

$$
W_{\text {pump }}=26.3138 \mathrm{mHead}
$$

The efficiency of the pump is assumed to be 75%. Therefore Required Work $=W_{\text {pump }} / 0.75$

$$
\begin{gathered}
=26.3138 / 0.75=35.0851 \mathrm{~m} \\
\text { Power }(\text { inkJ } / \mathrm{hr})=\text { RequiredWork } * \text { Totalmassflowrate } * g \\
=35.0851 * 3153.996 * 9.81=1085.55 \mathrm{~kJ} / \mathrm{hr}
\end{gathered}
$$

- Heat Exchanger E1:

In the Heat Exchanger, phase change is also taking place. Therefore, in addition to the sensible heat change, there is a latent heat of vaporization also which is to be accounted.
Heat of Vaporization of Methanol [4], H_{v}, Methanol $=35278000 \mathrm{~J} / \mathrm{kmol}$
Heat of Vaporization of Water [4], H_{v}, Water $=40.7 E+06 \mathrm{~J} / \mathrm{kmol}$

$$
\begin{gathered}
Q_{i n}=\sum n C_{P} \triangle T \\
=\left(n C_{P} \triangle T\right)_{\text {methanol }}+\left(n C_{P} \triangle T\right)_{\text {Water }} \\
Q_{\text {in }}=1.308719\left[\int_{302.82}^{373.15}\left(C_{P}, l\right)_{\text {water }} d T+H_{V, \text { Water }}+\int_{373.15}^{423.15}\left(C_{P}, g\right)_{\text {water }} d T\right] \\
+97.82622\left[\int_{302.82}^{337.7}\left(C_{P}, l\right)_{\text {methanol }} d T+H_{V, \text { methanol }}+\int_{337.7}^{423.15}\left(C_{P}, g\right)_{\text {methanol }} d T\right]
\end{gathered}
$$

Figure 7: Heat Exchanger E1

Using MATLAB Heat Input is computed [5],

$$
Q_{i n}=4.2014 * 10^{6} k J / h r
$$

Therefore, Hot Utility Consumption $=4.2014 * 10^{6} k J / h r$

Figure 8: Compressor C1

- Heat Exchanger E2:

Following the same method as Heat Exchanger E1,

$$
\begin{gathered}
Q_{\text {in }}=\sum n C_{P} \triangle T \\
=\left(n C_{P} \triangle T\right)_{\text {Nitrogen }}+\left(n C_{P} \triangle T\right)_{\text {Oxygen }} \\
Q_{\text {in }}=144.7437\left[\int^{423.15}\left(C_{P}\right)_{\text {Nitrogen }} d T\right]+38.47505\left[\int^{423.15}\left(C_{P}\right)_{\text {Oxygen }} d T\right]
\end{gathered}
$$

Stream 5
$\mathrm{P}=3 \mathrm{~atm}, \mathrm{~T}=407.8604 \mathrm{~K}\left(134.7^{\circ} \mathrm{C}\right)$

Figure 9: Heat Exchanger E2

Using MATLAB Heat Input is computed [5],

$$
Q_{i n}=82658 \mathrm{~kJ} / \mathrm{hr}
$$

Therefore, Hot utility consumption $=Q_{i n}=82658 \mathrm{~kJ} / \mathrm{hr}$.

- Mixing point between Streams 6, 7 and 8:

The temperature of stream number 6 is same as the temperature of stream number 7 , so stream 8 will also has the same temperature (150 C).

Figure 10: Mixing point between Streams 6, 7 and 8

- Reactor

Stream 8 enters the reactor and stream 9 comes out. Oxygen is the limiting reactant.

Table 13: Energy Balance around the Reactor

Species	Stream 8 (n_in) $\mathbf{k m o l} / \mathbf{h r}$	Hin	Stream 9 (n_in) $\mathbf{k m o l / h r}$	Hout
Methanol	97.82622	H 1	$\mathrm{kmol} / \mathrm{hr}$	H 5
Oxygen	38.47505	H 2	0	H 6
Nitrogen	144.7437	H 3	144.7437	H 7
Formaldehyde	-	-	85.50012	H 8
Hydrogen	-	-	8.550012	H 9
Water	1.308719	H 4	76.9501	H 10

Now,

$$
\begin{aligned}
H_{1} & =\int_{298.15}^{423.15}\left(C_{P}\right)_{\text {Methanol,gas }} d T=4.2954 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{2} & =\int_{298.15}^{423.15}\left(C_{P}\right)_{\text {Oxygen,gas }} d T=3.7205 * 10^{5} \mathrm{~J} / \mathrm{hr} \\
H_{3} & =\int_{298.15}^{423.15}\left(C_{P}\right)_{\text {Nitrogen,gas }} d T=3.6499 * 10^{5} \mathrm{~J} / \mathrm{hr} \\
H_{4} & =\int_{298.15}^{423.15}\left(C_{P}\right)_{\text {Water,gas }} d T=4.8071 * 10^{7} \mathrm{~J} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{aligned}
H_{5} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Methanol,gas }} d T=5.4759 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{6} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Oxygen,gas }} d T=9.7570 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{7} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Nitrogen,gas }} d T=9.3827 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{8} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Formaldehyde,gas }} d T=1.323 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{9} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Hydrogenl,gas }} d T=9.29 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{10} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Water,gas }} d T=5.4913 * 10^{7} \mathrm{~J} / \mathrm{hr}
\end{aligned}
$$

The first (main) reaction is exothermic with a yield of $7.866 \mathrm{kmol} / \mathrm{hr}$ and second reaction is endothermic with a yield of $0.874 \mathrm{kmol} / \mathrm{hr}$.
Total Formaldehyde formed: $85.50012 \mathrm{kmol} / \mathrm{hr}$
From first reaction which is exothermic, formaldehyde formed is $=\frac{7.866}{8.74} * 85.50012=76.9 \mathrm{kmol} / \mathrm{hr}$ Therefore from the second reaction which is endothermic, formaldehyde produced $=85.50012-$ $76.9=8.5852 \mathrm{kmol} / \mathrm{hr}$
Heat of formation of the first reaction $=-156000 \mathrm{~kJ} / \mathrm{kmol}$
Heat of formation of the second reaction $=85000 \mathrm{~kJ} / \mathrm{kmol}$
Net Heat released due to both the reactions $=(-156000 * 76.9)+(85000 * 8.5852)=-11266658 \mathrm{~kJ} / \mathrm{hr}$
Change in enthalpy around the reactor $=$ Heat of Formation $+H($ out $)-H($ in $)$

$$
=-11266658 k J / h r+H(o u t)-H(i n)
$$

- Heat Exchanger after the Reactor E3:

This heat exchanger installed after the reactor brings the product temperature down to 200 C from 343 C .

These are the enthalpies at the end of the reactor before entering the Heat Exchanger (Cold Utility will be used to bring the temperature down):

$$
\begin{aligned}
H_{5} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Methanol,gas }} d T=5.4759 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{6} & =\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Oxygen,gas }} d T=9.7570 * 10^{6} \mathrm{~J} / \mathrm{hr}
\end{aligned}
$$

$$
\begin{gathered}
H_{7}=\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Nitrogen,gas }} d T=9.3827 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{8}=\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Formaldehyde,gas }} d T=1.323 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{9}=\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Hydrogen,gas }} d T=9.29 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{10}=\int_{298.15}^{616.15}\left(C_{P}\right)_{\text {Water,gas }} d T=5.4913 * 10^{7} \mathrm{~J} / \mathrm{hr}
\end{gathered}
$$

Now, these are the enthalpies at the end of the reactor and the heat exchanger, Stream 9 (bringing the temperature down to 200 C):

$$
\begin{aligned}
H_{9, \text { Methanol }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Methanol,gas }} d T=4.5736 * 10^{7} \mathrm{~J} / \mathrm{hr} \\
H_{9, \text { Oxygen }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Oxygen,gas }} d T=5.247 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{9, \text { Nitrogen }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Nitrogen,gas }} d T=5.1194 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{9, \text { Formaldehyde }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Formaldehyde,gas }} d T=6.7819 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{9, \text { Hydrogen }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Hydrogen,gas }} d T=5.0974 * 10^{6} \mathrm{~J} / \mathrm{hr} \\
H_{9, \text { Water }} & =\int_{298.15}^{473.15}\left(C_{P}\right)_{\text {Water,gas }} d T=4.9805 * 10^{7} \mathrm{~J} / \mathrm{hr}
\end{aligned}
$$

Net Cold Utility Consumption $=\sum n_{\text {out }} H_{\text {out }}-\sum n_{\text {in }} H_{\text {in }}$

- Throttle

Throttle is used to reduce the temperature; its calculation depends on the difference in pressure $(\triangle P)$ of the inlet and outlet of the reactor. This leads to the need for the reactors dimensions.Since our project doesn't deal with the reactor's design. Therefore, the temperature after the throttle was decided to be chosen 165 C (from literature reference) in order to continue the energy balance around the absorber.

Figure 11: Energy Balance around the Absorber

- Absorber

We have four streams, the temperature of the two inlets streams are 20 C and 165 C for reaction product and water stream respectively.
Now, for energy flow computation, we know that
Input + Generation=Output + Consumption + Accumulation (All are in terms of Rate) [12] There is no generation, consumption or accumulation of heat inside the absorber.
Therefore, Input=Output

$$
\sum n_{\text {out }} H_{\text {out }}=\sum n_{\text {in }} H_{\text {in }}
$$

Therefore,

$$
\begin{gathered}
H_{i n}=H(\text { Stream } 11)+H(\text { Stream } 10) \\
H_{i n}=\int_{298.15}^{293.15} \sum n_{i, 11} C_{P i, 11} d T+\int_{298.15}^{438.15} \sum n_{i, 10} C_{P i, 10} d T
\end{gathered}
$$

Also,

$$
\begin{gathered}
H_{\text {out }}=H(\text { Stream } 12)+H(\text { Stream } 13) \\
H_{\text {out }}=\int_{298.15}^{T} \sum n_{i, 12} C_{P i, 12} d T+\int_{298.15}^{T} \sum n_{i, 13} C_{P i, 13} d T
\end{gathered}
$$

Equating $H($ in $)=H(o u t)$ and solving for T , we get

$$
T=362.31 K
$$

- Heat Exchanger E3:

Stream 13

Figure 12: Energy Balance around the Heat Exchanger E3

$$
\begin{gathered}
Q_{\text {in }}=\sum n C_{P} \Delta T \\
=\left(n C_{P} \triangle T\right)_{\text {Methanol }}+\left(n C_{P} \triangle T\right)_{\text {Water }}+\left(n C_{P} \triangle T\right)_{\text {Formaldehyde }}
\end{gathered}
$$

- Distillation Column

For given feed and product streams, only one of the heat effects, ϕ_{b} or ϕ_{c} is independent and subject to choice by the designer. In our project, ϕ_{c} is chosen to correspond to the desired reflux ratio and moles of overhead vapor. Then ϕ_{b} is calculated from the following overall Energy Balance equation:

$$
F H_{f}+\phi_{b}=D H_{d}+B H_{b}+\phi_{c}+\phi_{\text {losses }}
$$

The reflux ratio is taken to be around 8.671.

Figure 13: Energy Balance around the Distillation Column

Setting the reference Temperature as 344.09 K for enthalpy calculations.

$$
T_{o}=344.09 \mathrm{~K}
$$

Heat duty of reboiler is found out by calculating the condenser heat load first and then substituting it in the overall heat balance equation.
Condenser Heat Load is given by : $\phi_{c}=(R+1) D \lambda$
where $\lambda=$ Latent Heat of vaporization of the mixture at the dew point [4]
To find the $\lambda_{\text {avg }}$, we will use Watson's Equation:

$$
\frac{\lambda_{2}}{\lambda_{1}}=\left[\frac{T_{c}-T}{T_{c}-T_{1}}\right]^{0.38}
$$

where $\lambda_{2}=$ Heatofvaporizationat T

$$
\begin{gathered}
\lambda_{1}=\text { HeatofVaporizationat } T 1 \\
T_{c}=\text { CriticalTemperature }
\end{gathered}
$$

Properties of Components of Distillate:

Table 14: Properties of Components of Distillate

Component	y_{i}	$T_{c}(K)$	$T_{1}(K)$	$\lambda a t T_{1}$, $\mathbf{k J} / \mathbf{k m o l}$
Methanol	0.9033	512.6	338.15	35278
Water	0.0967	647.15	373.15	40650

Using Watson's Equation:

$$
\begin{gathered}
\lambda_{\text {methanol }}=35278 \times\left[\frac{512.6-344.09}{512.6-338.15}\right]^{0} .38=34713.529 \mathrm{~kJ} / \mathrm{kmolat} 344.09 \mathrm{~K} \\
\lambda_{\text {water }}=40650 \times\left[\frac{647.15-344.09}{512.6-338.15}\right]^{0} .38=42167.834 \mathrm{~kJ} / \mathrm{kmolat} 344.09 \mathrm{~K} \\
\lambda_{\text {avg }}=\sum y_{i} \lambda_{i}=35434.360 \mathrm{~kJ} / \mathrm{kmol}
\end{gathered}
$$

Now, Heat Duty of Condensation: $\phi_{c}=(8.671+1) 13.615 \times 35434.360=4666794.552 \mathrm{~kJ} / \mathrm{hr}=$ 1296.331 kW

Now, $T_{o}=344.09 \mathrm{~K}$
Therefore, $D H_{d}=0$
Enthalpy of Feed: $F H_{f}$

Refering to Table 12, values of cheat capacity coefficients is taken and $F H_{f}$ is calculated.

$$
F H_{f}=105.214 k W
$$

Enthalpy of Bottom: $B H_{b}$
$B H_{b}=n_{\text {water }} \int_{344.09}^{381.85} C_{P, \text { water }} d T+n_{\text {formaldehyde }} \int_{344.09}^{381.85} C_{P, \text { formaldehyde }} d T+n_{\text {methanol }} \int_{344.09}^{381.85} C_{P, \text { methanol }} d T$
On calculating, $B H_{b}=97.7363 \mathrm{~kW}$
Therefore, Substituting in the overall heat balance equation:

$$
\begin{gathered}
105.214+\phi_{b}=97.7363+1296.331+\phi_{\text {losses }} \\
\phi_{b}=1288.85+\phi_{\text {losses }} \\
\phi_{b}=1.05 \times 1288.85=1353.295 \mathrm{~kW}
\end{gathered}
$$

Considering losses to be 5% :

$$
\phi_{b}=1353.29
$$

7 Design of Distillation Column

Distillation is a process that separates two or more components into an overhead distillate and bottoms. The bottoms product is almost exclusively liquid, while the distillate may be liquid or a vapor or both. The separation process requires three things. [3]. First, a second phase must be formed so that both liquid and vapor phases are present and can contact each other on each stage within a separation column. Secondly, the components have different volatilities so that they will partition between the two phases to different extent. Lastly, the two phases can be separated by gravity or other mechanical means. Distillation differs from absorption and stripping in that the second phase is created by thermal means

The distillation column contains one feed stream and two product streams. The feed contains a mole percent of the light component, Z_{F}. The product stream exiting the top has a composition of X_{D} of the light component [8]. The product stream leaving the bottom contains a composition of X_{b} of the light component. The column is broken in two sections. The top section is referred to as the rectifying section. The bottom section is known as the stripping section. The top product stream passes through a total condenser. This effectively condenses all of the vapor distillate to liquid.

The calculations include a mass balance of the distillation unit, average physical properties of the components and relative volatilities. The minimum reflux ratio of the column is obtained through Underwood's equations and the minimum number of trays is obtained through Fenske's Equation. The diameter of the column is sized in the rectifying section and the stripping section. The layout of the sieve trays and their hydrodynamic effects are then obtained in a detailed fashion for the top and bottom sections.

Table 15: Composition of Feed, Distillate and Bottom Streams

Component	Feed		Distillate		Bottom	
	Moles(kmol/hr)	Mole Fraction	Moles(kmol/hr)	Mole Fraction	Moles(kmol/hr)	Mole Fraction
Methanol	12.3261	0.0539	12.30214	0.9031	0.037174	$1.72^{*} 10 \mathrm{E}-04$
Water	131.5274	0.5756	1.316154	0.0969	130.3016	0.6063
Formaldehyde	84.64511	0.3704	-		84.54631	0.3934

In our system :
Heavy Key: Water
Light Key: Methanol
Non-key component: Formaldehyde

7.1 Selection of Operating Pressure

Operating Pressure in distillation column is fixed by temoerature of the cheapest coolest medium(cooling water), which must be able to condense the over head distillate vapor. For this, bubble point of distillate (in case of total condenser) should be sufficiently greater than cooling water temperature [13]

Keeping project economics in mind, we have taken our cooling water temperature at $32 C(305 \mathrm{~K})$,which is easily available.

From the VLE Data [17], bubble point of distillate at various pressures:
$\mathrm{At} P=1 \mathrm{~atm}$,

$$
T=339.22 K
$$

Figure 14: Distillation Column

At $P=1.1 \mathrm{~atm}$,

$$
T=341.67 K
$$

At $P=1.2 a t m$,

$$
T=343.94 K
$$

At $P=1.3 \mathrm{~atm}$

$$
T=346.06 K
$$

As we keep on increasing the pressure, our operating costs keep on increasing. At atmospheric pressure, we will get minimum operating costs but the bubble point of distillate willl not be sufficiently greaterthan the coolant.

Therefore, assessing the choices, $P=1.2 a t m$, seems optimum.
Generally, as studied in the literature, a column operationg under such conditions has a pressure drop of around $20 \mathrm{kPa}(0.1973 \mathrm{~atm})$.

Therefore,

$$
\begin{gathered}
P_{\text {Bottom }}=P_{\text {Top }}+\Delta p \\
P_{\text {Bottom }}=1.2+0.1973=1.3973 \mathrm{~atm}
\end{gathered}
$$

7.2 FUG(Fenske-Underwood-Gilliland) Method

It is the most widely used short cut method for determining number of equilibrium stages for multicomponent distillation.Using Fenske's Equation, we find the number of minimum number of theroetical plates required [3]. After that, Underwood's Method is used to find the Minimum reflux ratio. Gilliland's equation is finally used to get the actual number of theoretical plates required using the minimum number of plates required and minimum reflux ratio.

- Determination of Minimum Number of Trays:Fenske's Equation

The Fenske's Equation in used to find the minimum number of theoretical stages required for desired separation.

Fenske's Equation:

$$
N_{m}=\frac{\ln \left[\left(\frac{x_{L K}}{x_{H K}}\right)_{d}\left(\frac{x_{H K}}{x_{L K}}\right)_{b}\right]}{\ln \left(\alpha_{L K / H K, a v g}\right)}
$$

where $\alpha_{L K / H K, a v g}=$ Average Relative Volatility of Light Key with respect to Heavy key $\left(x_{L K}, X_{H K}\right)_{d}=$ Mole Fraction of Light key and Heavy key in Distillate
$\left(x_{L K}, X_{H K}\right)_{b}=$ Mole Fraction of Light key and Heavy key in Bottom
Also, generally

$$
\alpha_{L K / H K, a v g}=\left(\alpha_{L K / H K, T o p} \times \alpha_{L K / H K, B o t t o m}\right)^{\frac{1}{2}}
$$

Now,

$$
\alpha_{i / j}=\frac{\left(\frac{\text { Mole Fraction of } \mathrm{i} \text { in vapour }}{\text { Mole Fraction of } \mathrm{i} \text { in liquid }}\right)}{\left(\frac{\text { Mole Fraction of } \mathrm{j} \text { in vapour }}{\text { Mole Fraction of } \mathrm{j} \text { in liquid }}\right)}
$$

LK $=$ Methanol(M) and HK=WaterW
Now, for $\alpha_{M / W, t o p}$, referring to the VLE Diagram Figure 15:
From Figure 15, $\alpha_{M / W, \text { top }}=2.509$

For $\alpha_{M / W, \text { bottom }}$, referring to the VLE Diagram Figure 16:
From Figure 16, $\alpha_{M / W, \text { bottom }}=7.7650$
Therefore,

$$
\alpha_{L K / H K, a v g}=(2.509 \times 7.7650)^{\frac{1}{2}}=4.41
$$

From Kister [6] , this condition holds true only if following condition is satified:

Figure 15: VLE Diagram for Methanol-Water system at 70.94 C and 1.2 atm [17]

$$
\frac{\alpha_{\text {top }}-\alpha_{\text {bottom }}}{\alpha_{\text {top }}+\alpha_{\text {bottom }}} \leq 0.1 \ln \left[\frac{\alpha_{\text {top }}+\alpha_{\text {bottom }}}{2}\right]
$$

By substituting the values of $\alpha_{\text {top }}$ and α bottom, the above condition holds true. Therfore we can use $\alpha_{\text {avg }}=4.41$
Thus, substituting all the values in Fenske's Equation, we get

$$
\begin{gathered}
N_{m}=\frac{\ln \left[\left(\frac{0.903}{0.9069}\right)\left(\frac{0.6063}{1.72 * 10^{-4}}\right)\right]}{\ln 4.41} \\
=7.007 \approx 7
\end{gathered}
$$

The Minimum number of Trays (Theoretical) required are 7 trays.

Figure 16: VLE Diagram for Methanol-Water system at 108.7 C and 1.3973atm [17]

- Determination of Minimum Reflux Ratio: Underwood's Equation

The Underwood's Equation is used to calculate the Minimum Reflux Ratio required.

Underwood's Equation:

$$
\begin{aligned}
& \sum \frac{\alpha_{i} x_{i d}}{\alpha_{i}-\nu}=R_{m}+1 \\
& \sum \frac{\alpha_{i} x_{i f}}{\alpha_{i}-\nu}=1-q
\end{aligned}
$$

where, $\alpha_{i}=$ Average Relative Volatility of each component i with respect to Heavy Key(here, Water)

$$
\begin{gathered}
x_{i d}=\text { Mole Fraction of component i in Distillate } \\
x_{i f}=\text { Mole Fraction of component i in Feed } \\
q=\text { Quality of feed (Here, Saturated Liquid } q=1 \text {) }
\end{gathered}
$$

$\nu=$ Constant whose value lies between the relative volatility if heavy key and light key

Now, to find the relative volatilities of formaldehyde and methanol with respect to water at mean column temperature of 89.8 C:

For $\alpha_{F / W}$, referring to the VLE Diagram Figure :

From Figure, $\alpha_{F / W}=2.21$
For $\alpha_{M / W}$ at $89.8 C$, referring to the VLE Diagram Figure :

$$
\begin{gathered}
\alpha_{M / W}=5.48 \\
\alpha_{W / W}=1
\end{gathered}
$$

Now, applying the Underwood's Equation to calculate ν :
Equation to be used:

$$
\begin{aligned}
& \sum \frac{\alpha_{i} x_{i f}}{\alpha_{i}-\nu}=1-q \\
q & =1(\text { Saturated Liquid })
\end{aligned}
$$

Therefore,

$$
\sum \frac{\alpha_{i} x_{i f}}{\alpha_{i}-\nu}=0
$$

Table 16: Relative Volatilities (wrt to Water) and the Composition in the Feed Stream

Component	α	Mole fraction in feed
Methanol	5.48	0.0539
Water	1	0.5756
Formaldehyde	2.21	0.3704

$$
\Rightarrow \frac{5.48 \times 0.0539}{5.48-\nu}+\frac{1 \times 0.5756}{1-\nu}+\frac{2.21 \times 0.3704}{2.21-\nu}=0
$$

Solving the above equation using MATLAB:
We get $\nu=4.8367,0.9853$.
The value 4.8367 lies between $(1,5.48)$.
Therefore, value of $\nu=4.8367$.
Now, to find R_{m},

$$
\sum \frac{\alpha_{i} x_{i d}}{\alpha_{i}-\nu}=R_{m}+1
$$

Now, $R_{m}+1=7.67$

$$
R_{m}=6.67
$$

Table 17: Relative Volatilities (wrt to Water) and the Composition in the Distillate Stream

Component	x_{d}	α	$\frac{\alpha_{i} x_{i d}}{\alpha_{i}-\nu}$
Water	0.0969	1	-0.0252
Methanol	0.903	5.48	7.6922

Minimum Reflux Ratio=6.67
Assuming the actual Reflux Ratio to be 1.3 times R_{m}.

$$
\begin{gathered}
R=1.3 \times R_{m} \\
R=1.3 \times 6.67=8.671
\end{gathered}
$$

- Determination of Actual Number of Theoretical Plates: Gilliland's Equation:

In Gilliland's Equation, we find $X=\frac{R-R_{m}}{R+1}$, corresponding to which we read $Y=\frac{N-N_{m}}{N+1}$. Since we know all other values other than N , we can easily calculate N .

Figure 17: Gilliland's Correlation [6]

$$
R_{m}=6.67
$$

$$
\begin{gathered}
N_{m}=7 \\
R=8.671
\end{gathered}
$$

Now,

$$
X=0.2069
$$

Correspondingly, we get $Y=0.43$

$$
\frac{N-N_{m}}{N+1}=0.43
$$

Solving for N , we get $N=10.44$ stages.

7.3 Molokanov Approach

Molokanov Equation is used to calculate the actual number of theoretical plates required (same as FUG Method).This method is much more accuarte than Gilliland's Correlation. It gives much precise results. Therefore it is preferable to use the results computed from thus equation.

Molokanov Correlation:

$$
Y=1-\exp \left[\left(\frac{1+54.4 X}{11+117.2 X}\right)\left(\frac{X-1}{X^{0.5}}\right)\right]
$$

where,

$$
X=\frac{R-R_{m}}{R+1}
$$

Now, $R_{m}=6.67, R=8.671$
Substituting these values, we get $X=0.2069$

$$
X=0.2069
$$

Substituting X to get the values of Y :

$$
Y=0.45326
$$

Now,

$$
Y=\frac{N_{m}+Y}{1-Y}
$$

Therefore, we get $N=9.39$ stages.
This values is comparable to the number of stages calculated using FUG Method.

7.4 Optimum Feed Stage

To get the location of the optimum feed stage, we use the following equation:

$$
\frac{N_{\text {Top }}}{N_{\text {Bottom }}}=\frac{\ln \left[\frac{(D / F)_{\text {Methanol }}}{(D / F)_{\text {Water }}}\right]}{\ln \left[\frac{(F / B)_{\text {Methanol }}}{(F / D)_{\text {Water }}}\right]}
$$

Now,

$$
\begin{aligned}
\left(\frac{D}{F}\right)_{\text {Methanol }} & =\frac{12.30214}{12.3261}=0.9980 \\
\left(\frac{D}{F}\right)_{\text {Water }} & =\frac{1.3161}{131.5274}=0.01 \\
\left(\frac{F}{B}\right)_{\text {Methanol }} & =\frac{12.3261}{0.037174}=331.605 \\
\left(\frac{F}{D}\right)_{\text {Water }} & =\frac{131.5274}{130.3016}=1.009
\end{aligned}
$$

On solving we get,

$$
\frac{N_{\text {Top }}}{N_{\text {Bottom }}}=3.83749
$$

Now, optimum feed stage location (from the top) is given by:

$$
\frac{N_{\text {Total }}}{1+\frac{N_{\text {Bottom }}}{N_{\text {Top }}}}=\text { Optimum Stage from the Top }
$$

Taking $N_{\text {Total }}=10.44$ Stages(Using Gilliland's Correlation)

$$
\frac{10.44}{1+\frac{1}{3.83749}}=8.28 \approx 8
$$

Thus feed should be introduced on stage 8 fom the top.

7.5 Determination of Sieve Tray Tower Diameter

Sieve tray column is decided to be used in the design. This decision is based upon the compatibility of this tray type with our methanol- formaldehyde-water separation process. These features include moderate capacity, relatively high efficiency, low cost, low fouling tendency and low maintenance requirements. We will start with the calculation of the vapor flooding velocity, the operating velocity and finally sizing the actual diameter of the column. This approach is to be applied to the rectifying section and extended to the stripping section of the column.

- Rectifying Section Diameter

Flooding velocity through sieve tray tower can be determined by the following equation:

$$
v_{f}=C_{f}\left(\frac{\sigma}{0.02}\right)^{0.2}\left(\frac{\rho_{L}-\rho_{V}}{\rho_{v}}\right)^{0.5}
$$

where,
$v_{f}=$ Flooding Vapour velocity based on net cross-sectional area, m / s
$C_{f}=$ Flooding Constant which can be obtained from Figure
$\sigma=$ Surface Tension of Liquid, N/m
$\rho_{V}=$ Density of vapour, $\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{L}=$ Density of liquid, $\mathrm{kg} / \mathrm{m}^{3}$
$F_{L V}=$ Liquid-vapour flow factor $=\frac{L_{W}}{V_{W}}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{0.5}$
$L_{W}=$ Mass flow rate, kg / s
$V_{W}=$ Mass flow rate, kg / s

Figure 18: Flooding Velocity Correlation for Sieve Tray Tower [6]
Now, Molar flow rate of vapour and liquid at the top in the rectifying section:

$$
L=R D
$$

$$
L=8.671 \times 13.61829
$$

$$
L=118.08 \mathrm{kmol} / \mathrm{hr}
$$

Also, $V=(R+1) D$

$$
V=131.5256 \mathrm{kmol} / \mathrm{hr}
$$

Density of vapour at top, $\rho_{V^{-}}$

$$
\begin{gathered}
\rho_{V}=\frac{P \times M_{\text {avg }}}{R T} \\
M_{\text {avg }}=32 \times 0.9033+18 \times 0.0966 \\
M_{\text {avg }}=30.6444 \\
\rho_{V}=\frac{30.6444}{344.09} \frac{273}{22.414} \\
\rho_{V}=1.0847 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Density of liquid at top, $\rho_{L^{-}}$

$$
\begin{gathered}
\rho_{L}=\frac{1}{\sum \frac{w_{i}}{\rho_{i}}} \\
w_{\text {methanol }}=0.9432 \\
w_{\text {water }}=0.0567 \\
\rho_{\text {methanolat } 70.94^{\circ} \mathrm{C}=742.266 \mathrm{~kg} / \mathrm{m}^{3}} \\
\rho_{\text {waterat } 70.94^{\circ} \mathrm{C}=968.435 \mathrm{~kg} / \mathrm{m}^{3}} \\
\rho_{L}=\frac{1}{\frac{0.9432}{742.266}+\frac{0.0567}{968.435}} \\
\rho_{L}=752.303 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Now, $F_{L V}=\frac{L_{W}}{V_{W}}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{0.5}$

$$
\frac{L_{W}}{V_{W}}=\frac{L}{V}=\frac{118.08}{131.5256}
$$

$F_{L V}=0.897 \times \frac{1.0847}{752.303}^{0.5}=0.034$
For the first trial calculations, let the tray spacing be 12inchor0.3m.
Referrring to Figure 18:

$$
C_{f}=0.24
$$

From Online Dortmund Data Bank [1] :

$$
\begin{gathered}
\sigma_{\text {methanol }}=18.2343 \times 10^{-03} \mathrm{~N} / \mathrm{m} \\
\sigma_{\text {waterl }}=64.1097 \times 10^{-03} \mathrm{~N} / \mathrm{m}
\end{gathered}
$$

Therefore

$$
\sigma_{\text {top }}=0.02266 \mathrm{~N} / \mathrm{m}
$$

Using the Figure 18 and the equation :

$$
v_{f}=1.75290 \mathrm{~m} / \mathrm{s}
$$

Let actual vapour velocity through tower be 85% of the flooding velocity.

$$
\begin{gathered}
v=0.85 \times v_{f} \\
v=0.85 \times 1.75290=1.4899 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Volumetric flow rate of vapor at top:

$$
\dot{Q}=\frac{V \times M_{a v g}}{\rho_{V}}=\frac{131.5256 \times 30.6444}{1.0847}=3715.795 \mathrm{~m}^{3} / \mathrm{hr}=1.032 \mathrm{~m}^{3} / \mathrm{s}
$$

Net Area required at the top:

$$
A_{n}=\frac{\dot{Q}}{v}=\frac{1.032}{1.4899}=0.6926 \mathrm{~m}^{2}
$$

Let downcomer area be 10% of the net area:

$$
\begin{aligned}
& A_{d}=0.10 A_{n} \\
& A_{n}=A_{c}-A_{d}
\end{aligned}
$$

where, $A_{c}=$ Inside cross sectional area of the tower

$$
\begin{gathered}
0.90 A_{c}=0.6926 \\
A_{c}=0.7695 m^{2}
\end{gathered}
$$

Therefore Inside diameter of the column at the top:

$$
\begin{aligned}
D_{i}(t o p) & =\sqrt{\frac{4 \times A_{c}}{\pi}} \\
D_{i}(t o p) & =0.9898 \mathrm{~m}
\end{aligned}
$$

- Stripping Section Diameter

Following the same procedure as we did for the rectifying section:
Molar flow rates of vapour and liquid in the stripping section:

$$
\begin{gathered}
\bar{L}=L+F q=L+F=118.08+228.4986=346.582 \mathrm{kmol} / \mathrm{hr} \\
\bar{V}=F(q-1)+V=V=131.5256 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

Therefore $\frac{\bar{L}}{\bar{V}}=\frac{118.08}{131.5256}=0.8972$
Density of vapour at bottom, $\rho_{V^{-}}$

$$
\begin{gathered}
\rho_{V}=\frac{P \times M_{\text {avg }}}{R T} \\
M_{a v g}=30 \times 0.3934+32 \times 0.000172+18 \times 0.6063 \\
M_{a v g}=22.7239 \\
\rho_{V}=\frac{141.581 \times 22.7239}{381.85} \frac{273}{22.414 \times 101.325} \\
\rho_{V}=1.012 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Density of liquid at bottom, $\rho_{L^{-}}$

$$
\begin{gathered}
\rho_{L}=\frac{1}{\sum \frac{w_{i}}{\rho_{i}}} \\
w_{\text {methanol }}=2.436 \times 10^{-04} \\
w_{\text {water }}=0.4803 \\
w_{\text {formaldehyde }}=0.5194 \\
\rho_{\text {methanolat } 108.7^{\circ} \mathrm{C}=699.482 \mathrm{~kg} / \mathrm{m}^{3}} \\
\rho_{\text {waterat } 108.7^{\circ} \mathrm{C}=940.744 \mathrm{~kg} / \mathrm{m}^{3}}^{\rho_{\text {formaldehydeat } 108.7^{\circ} \mathrm{C}=766.706 \mathrm{~kg} / \mathrm{m}^{3}}} \\
\rho_{L}=\frac{1}{\frac{0.4803}{940.744}+\frac{2.436 \times 10^{-04}}{6999.482}+\frac{0.5194}{766.706}} \\
\rho_{L}=841.75 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

Now, $F_{L V}=\frac{L_{W}}{V_{W}}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{0.5}$
$F_{L V}=0.8972 \times \frac{1.012}{841.75}^{0.5}=0.031$

Let the tray spacing be 12 inchor 0.3 m .
Referrring to Figure 18:

$$
C_{f}=0.245
$$

From Online Dortmund Data Bank [1]:

$$
\begin{gathered}
\sigma_{\text {methanol }}=14.8202 \times 10^{-03} \mathrm{~N} / \mathrm{m} \\
\sigma_{\text {water }}=57.1663 \times 10^{-03} \mathrm{~N} / \mathrm{m} \\
\sigma_{\text {formaldehyde }}=0.00132417 \mathrm{~N} / \mathrm{m}
\end{gathered}
$$

Therefore

$$
\sigma_{\text {bottom }}=0.03518 \mathrm{~N} / \mathrm{m}
$$

Using the Figure 18 and the equation :

$$
v_{f}=2.06520 \mathrm{~m} / \mathrm{s}
$$

Let actual vapour velocity through tower be 85% of the flooding velocity.

$$
\begin{gathered}
v=0.85 \times v_{f} \\
v=0.85 \times 2.06520=1.755427 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Volumetric flow rate of vapor at top:

$$
\dot{Q}=\frac{\bar{V} \times M_{a v g}}{\rho_{V}}=\frac{131.5256 \times 22.7239}{1.0847}=2953.332 \mathrm{~m}^{3} / \mathrm{hr}=0.82037 \mathrm{~m}^{3} / \mathrm{s}
$$

Net Area required at the top:

$$
A_{n}=\frac{\dot{Q}}{v}=\frac{0.82037}{1.755427}=0.46733 \mathrm{~m}^{2}
$$

Let downcomer area be 10% of the net area:

$$
\begin{aligned}
& A_{d}=0.10 A_{n} \\
& A_{n}=A_{c}-A_{d}
\end{aligned}
$$

where, $A_{c}=$ Inside cross sectional area of the tower

$$
0.90 A_{c}=0.46733
$$

$$
A_{c}=0.5193 m^{2}
$$

Therefore Inside diameter of the column at the bottom:

$$
\begin{aligned}
D_{i}(\text { bottom }) & =\sqrt{\frac{4 \times A_{c}}{\pi}} \\
D_{i}(\text { bottom }) & =0.8131 \mathrm{~m}
\end{aligned}
$$

Since both the top and bottom diameters are less than 1 m , tray spacing of 12 inch $\approx 0.3 \mathrm{~m}$ is acceptable.

7.6 Tray Efficiencies and Column Height

Since the Diameters of the rectifying section and the stripping section are different, a slight change in the tray efficiency is to be considered in the column design[9]. The efficiency of the trays is to be determined using OConnell Correlation which is estimated the efficiency as a function of the product of the feed liquid viscosity and the relative volatility of the key components. This correlation is based on test data from 31 plant columns, including hydrocarbon, chlorinated hydrocarbon, and alcohol separation columns.

The viscosity is evaluated at the average arithmetic temperature between the column top and bottom temperatures.

The Lockett's Equation Form for O'Conell correlation:

$$
E_{O C}=0.492\left(\mu_{L} \alpha\right)^{-0.245}
$$

- Rectifying Section Efficiency

Viscosity of Feed(at $89.82^{\circ} \mathrm{C}$):
Weight Fractions of components in the feed:
From Table 10:

$$
\begin{gathered}
w_{\text {methanol }}=\frac{394.4353}{5301.281}=0.0744 \\
w_{\text {water }}=\frac{2367.492}{5301.281}=0.4465 \\
w_{\text {formaldehyde }}=\frac{2539.353}{5301.281}=0.479
\end{gathered}
$$

Also, from Dortmund Data Bank [1], viscosities at $89.82^{\circ} \mathrm{C}$:

$$
\begin{gathered}
\mu_{\text {methanol }}=0.20944 c P \\
\mu_{\text {water }}=0.30583 c P \\
\mu_{\text {formaldehyde }}=0.00546 c P
\end{gathered}
$$

Therefore $\mu_{\text {feed }}=\sum w_{i} \mu_{i}$

$$
\mu_{\text {feed }}=0.15239 c P
$$

Figure 19: O'Conell Correlation for Tray Efficiency [6]

Now, $\alpha_{M / W, T o p}=2.509$
Therefore, $\left(\mu \times \alpha_{M / W, \text { Top }}\right)=0.3823$
Using Lockett's Equation Form [6] :
Tray Efficiency: 0.622
Using Figure 19
Tray Efficiency: 63\%
The efficiencies calculated by the two methods agree well with each other.
Actual Number of trays in the Rectifying section: $\frac{N_{T o p}}{\text { TrayEfficiency }}$

$$
N_{\text {Top,actual }}=\frac{8.28}{0.622}=13.31 \approx 14
$$

- Stripping Section Efficiency

Using the same method stated above:

$$
\begin{gathered}
\mu_{\text {feed }}=0.15239 c P \\
\alpha_{M / W, \text { Bottom }}=7.7650
\end{gathered}
$$

Therefore, $\left(\mu_{\text {feed }} \times \alpha_{M / W, B o t t o m}\right)=1.183$
Using Lockett's Equation Form:
Tray Efficiency: 0.472
Using Figure 19
Tray Efficiency: 48\%
The efficiencies calculated by the two methods agree well with each other. Now,
Actual Number of trays in the Stripping section: $\frac{N_{\text {Bottom }}}{\text { TrayEfficiency }}$

$$
N_{\text {Bottom,actual }}=\frac{2.158}{0.472}=4.572 \approx 5
$$

- Column Height

The column height depends on the tray spacing. In our design method, we have fixed our tray spacing to be 12 inches $\approx 0.3 \mathrm{~m}$. [3] A safety factor of 10% is to be considered for the final design height.
Total Number of Stages $=14+5+1$ (Reboiler Stage)

$$
N_{\text {Total }}=20
$$

Therefore, Column Height $=$ TraySpacing $\times N_{\text {Total }} \times$ SafetyFactor

$$
\text { ColumnHeight }=0.3048 \times 20 \times 1.1
$$

$$
\text { ColumnHeight }=6.7056 \mathrm{~m}
$$

7.7 Selection of Liquid Flow Pattern over the Sieve Tray

After finding the tower diameter, liquid flow pattern over sieve tray is decided. Liquid flowpatterns depends on the liquid flow rate and tower diameter. [16]

Following table can be used for the selection of liquid flow pattern:

Table 18: Selection of Liquid Flow Pattern

Column Diameter,m	Range of liquid flow rate, $\mathrm{m}^{3} / \mathrm{s}$			
	Reverse Flow	$\begin{aligned} & \text { Cross Flow } \\ & \text { (Single Pass) } \end{aligned}$	Double Pass	Cascade Double Pass
0.9	$0-1.90 \times 10^{-03}$	$1.90 \times 10^{-03}-0.0126$		
1.2	$0-2.50 \times 10^{-03}$	$2.50 \times 10^{-03}-0.0190$		
1.8	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0250$	0.025-0.0440	
2.4	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0315$	0.0315-0.050	
3	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0315$	0.0315-0.057	0.057-0.0880
3.66	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0315$	0.0315-0.063	0.063-0.1000
4.6	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0315$	0.0315-0.070	0.070-0.1136
6	$0-3.15 \times 10^{-03}$	$3.15 \times 10^{-03}-0.0315$	0.0315-0.070	0.070-0.1260

Figure 20: Cross Flow Liquid Flow Pattern

Now, Volumetric Flow rate of Liquids:
For Rectifying Section,

$$
\begin{gathered}
\dot{Q}_{L}=\frac{L M_{a v g}}{\rho_{L}} \\
\dot{Q}=\frac{118.08 \times 30.644}{752.303}=6.96 \mathrm{~m}^{3} / \mathrm{hr}=1.96 \times 10^{-03}
\end{gathered}
$$

For Stripping Section,

$$
\begin{gathered}
\dot{Q}_{L}=\frac{\bar{L} M_{\text {avg }}}{\rho_{L}} \\
=\frac{346.582 \times 22.7239}{841.75}=9.3563 \mathrm{~m}^{3} / \mathrm{hr}=2.598 \times 10^{-03}
\end{gathered}
$$

Referring to Table 18, single pass tray can be used for both sections.

7.8 Tray Layout and Hydraulics

This section deals with deciding the tray layout and understanding the hydraulics associated with it. It comprises of finding the amount of liquid entrained and desigining the downcomer. We will be using a straight segmental vertical downcomer and a weir. The decision to use a segmental straight downcomer is due to its simple geometry, low cost. Also because it utilizes most of the column area for the large downflow in our system and the ease at which its operated and maintained.[6]

- Rectifying Section

Diameter of the column:0.9898m

- Entrainment at a Flooding Point of 85\% :

Fractional Entrainment ψ is found out using the Fair's Entrainment Correlation. Abscissa $\left(F_{L V}=\frac{L}{G}\left(\frac{\rho_{G}}{\rho_{L}}\right)^{0.5}\right)$ is found out and for the corresponding percent of flood, fractional entrainment is found out.

Figure 21: Fair's Entrainement Correlation [6]

$$
F_{L V}=0.897 \times \frac{1.0847}{752.303}^{0.5}=0.034
$$

Now, $F_{L V}=0.034$
Percent Flood $=\frac{\text { Actual Vapour Velocity based on net area }}{\text { Floding Velocity }} \times 100$
We have taken the actual velocity to be 85% of the flooding velocity. Its a standard value to assume.
Therefore, for a percent flood of 85% -

$$
\psi=0.13=13 \%
$$

- Entrained Liquid:

$$
\begin{gathered}
L_{\text {entrained }}=L_{e}=\frac{\psi}{1-\psi} \times L \\
L_{e}=\frac{0.13}{1-0.13} \times 118.08=17.644 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

- Amount Entrained on Top:

$$
L+L_{\text {entrained }}=L+L_{e}=118.08+17.644=135.724 \mathrm{kmol} / \mathrm{hr}
$$

- Column Cross Sectional Area:

$$
\begin{gathered}
A_{\text {Total }}=\frac{\pi \times D i a^{2}}{4}=\frac{\pi \times 0.9898^{2}}{4} \\
A_{\text {Total }}=0.76945 \mathrm{~m}^{2}
\end{gathered}
$$

- Downcomer Area:

$$
A_{d}=(1-\eta) \times A_{\text {Total }}
$$

η denotes the fraction of tray area excluding the downcomer portion. Generally its value lies between 0.8 to 0.95 . Assuming the value to be 0.9 .

$$
A_{d}=(1-0.9) \times 0.76945=0.076945 m^{2}
$$

- Weir Length and Height

For a distillation column operating above atmospheric pressure, weir height is kept in between 40 mm to 90 mm ; while 40 mm to 50 mm is more common.
Therefore, Weir height is kept as $h_{w}=45 \mathrm{~mm}$.
Weir Length is normally kept in between 0.6 to 0.85 times the column diameter. For $\frac{A_{d}}{A_{\text {Total }}}=0.1,0.727$ can be used as the multiplying factor.
Therefore, Weir Length $=0.727 \times 0.9898=0.7196 \mathrm{~m}=28.331 \mathrm{inch}=2.361 \mathrm{ft}$

- Active Area of the Tray:

$$
\begin{gathered}
\eta=0.9 \\
A_{\text {Active }}=A_{\text {Total }} \times(1-2(1-\eta))
\end{gathered}
$$

Therefore, $A_{\text {Active }}=0.61556 \mathrm{~m}^{2}$

- Total Area of holes:

$$
A_{\text {Holes }}=A_{\text {Active }} \times \beta
$$

The tray selected is a standard 14 gauge tray with thickness $\left(T_{\text {tray }}\right)=0.078$ in with a common hole diameter $d_{o}=\frac{3}{16}$ inch for normal operation and clean service. Pitch standard spacing between the holes is of $3.8 d_{o}=0.7125$ inches. A 2.5 inch space between the edge holes and the column wall is chosen, and a space of 4 inch between the edge hole and the tray weir. All these values are standard values used in the industry.
Generally $\beta=0.1$
Therefore, $A_{\text {Holes }}=0.1 \times 0.61556=0.061556 \mathrm{~m}^{2}$

- Vapor velocity through Tray Hole:

$$
\begin{gathered}
v=\frac{V \times M_{\text {avg }}}{3600 \times \rho_{V} \times A_{\text {Holes }}} \\
v=\frac{131.5256 \times 30.644}{3600 \times 1.0847 \times 0.061556} \\
v=16.76 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

- Orifice Coefficient:

It is used in the calculation of dry pressure drop through the tray. Orifice Coefficient C_{o} is found out using the $\frac{T_{\text {Tray }}}{\text { HoleDiameter }}$ and $\frac{A_{\text {Holes }}}{A_{\text {Active }}}$. Following figure gives the correlation used to find C_{o} :
Now,

$$
\begin{gathered}
\frac{A_{\text {Holes }}}{A_{\text {Active }}}=\frac{0.061556}{0.61556}=0.1 \\
\frac{T_{\text {Tray }}}{\text { HoleDiameter }}=\frac{0.078}{0.1875}=0.416
\end{gathered}
$$

Using Figure 22,

$$
C_{o}=0.73
$$

Using a much accurate correlation given by Hughmark and O'Conell:

$$
C_{o}=0.85032-0.04231 \frac{d_{o}}{T_{\text {Tray }}}+0.00017954 \frac{d_{o}}{T_{\text {Tray }}}
$$

Calculating, $C_{o}=0.759$

- Total Head Loss of Liquid through dry Tray:

The following equation was given by Ludwig:

$$
h_{\triangle P, d r y}=\frac{0.003 \times v^{2} \times \rho_{V}\left(\frac{\rho_{W_{\text {ater }}}}{\rho_{L}}\right)\left(1-\beta^{2}\right)}{C_{o}^{2}}
$$

Now, $v=16.76 \mathrm{~m} / \mathrm{s}=54.48 \mathrm{ft} / \mathrm{sec}$

Figure 22: Orifice Coefficient Correlation for Sieve Tray [6]

$$
\rho_{V}=1.0847 \mathrm{~kg} / \mathrm{m}^{3}=0.0677 \mathrm{lb} / \mathrm{ft}^{3}
$$

Therefore, on calculating

$$
h_{\triangle P, d r y}=1.377 \text { inch }=0.03497 \mathrm{~m}
$$

- Liquid Height over the weir:

Now, Liquid height over the weir $=h_{\text {crest }}=h_{o w}=0.48 F_{w}\left(Q_{L}\right)^{\frac{2}{3}}$
where $F_{w}=$ WeirCorrectionFactor

$$
Q_{L}=\frac{\text { Liquid Load in gallons per minute }}{\text { Length of the Weir }}
$$

Figure 23: Weir Correction Factor for Segmental Downcomers in calculation of liquid head over the weir [6]

Now Liquid Load in gallons per minute, L_{g} :

$$
L_{g}=\frac{\left(L+L_{e}\right) M_{a v g}}{\rho_{L}}
$$

$L_{g}=\frac{135.724 \times 30.644}{752.303}=5.5285 \mathrm{~m}^{3} / \mathrm{hr}=1460$ gallons $/ \mathrm{hr}=24.33$ gallons $/$ minute $=0.0542076 \mathrm{ft}^{3}$
Abscissa $=\frac{L_{g}}{\text { WeirLength,ft } t^{2.5}}$

$$
\text { Abscissa }=\frac{24.33}{2.361^{2.5}}=2.8405
$$

Ratio weir length to tower diameter $=\frac{0.7196}{0.9898}=0.727$
Using Figure 23, $F_{w}=1.026$
Now, $h_{\text {ow }}=h_{\text {crest }}=0.48 F_{w}\left(Q_{L}\right)^{\frac{2}{3}}$

$$
\begin{gathered}
h_{\text {crest }}=0.48 \times 1.026 \times\left(\frac{24.33}{28.331}\right)^{\frac{2}{3}} \\
h_{\text {crest }}=0.4449 \mathrm{in}=0.0113 \mathrm{~m}
\end{gathered}
$$

- Liquid Fractional Head Loss:

The flow area under the downcomer is calcualted as follows:

$$
A_{d u}=\text { gap } \times \text { WeirLength }
$$

The gap is usually 1 inch $=0.083 \mathrm{ft}$ in all the distillation columns working above the atmospheric pressure.
Therefore,

$$
A_{d u}=0.083 \mathrm{ft} \times 2.361 \mathrm{ft}=0.195963 \mathrm{ft} t^{2}
$$

Fractional loss in liquid head, $h_{d u}=0.56 \times \frac{L_{g}, f t^{3} / \mathrm{sec}^{2}}{A_{d u}}$

$$
h_{d u}=0.56 \times \frac{0.0542076^{2}}{0.195963}=0.04285 \text { inch }=0.00108839 \mathrm{~m}
$$

- Residence Time:

The total pressure head on the downcomer is the summation of all the hydrodynamic effects determined previously as follows:

$$
h_{d c}=h_{\Delta P, d r y}+h_{\text {weir }}+h_{\text {crest }}+h_{\text {grad }}+h_{d u}
$$

$h_{\text {grad }}$ is generally zero for sieve tray tower.

$$
h_{d c}=0.03497+0.045+0.0113+0.00108839=0.092 \mathrm{~m}
$$

The residence time is calculated as follows:

$$
\begin{gathered}
\theta_{\text {res }}=\frac{A_{d} h_{\text {dc }} \rho_{L}}{\left(L+L_{e}\right) M_{\text {avg }}} \\
\theta_{\text {res }}=\frac{0.076945 \times 0.092 \times 752.303}{135.724 \times 30.644}=1.2804 \times 10^{-03}=4.609 \mathrm{sec}
\end{gathered}
$$

- Flooding Check:

As calculated above, total pressure head on the downcomer, $h_{d c}=0.092 \mathrm{~m}$
The actual aerated head, $h_{d c, \text { aerated }}=\frac{h_{d c}}{\phi}$
where $\phi=$ froth density at normal operation
Now,

$$
\begin{gathered}
\phi=\frac{1}{\eta+1} \\
\eta=0.9
\end{gathered}
$$

Therefore, $\phi=\frac{1}{1+0.9}=0.52$

$$
h_{d c, \text { aerated }}=\frac{0.092}{0.52}=0.1769
$$

Since, $h_{d c, \text { aerated }}=0.1769 \mathrm{~m}$ is less than tray spacing which is 12 inch $\approx 0.3 \mathrm{~m}$.
The aerated liquid head is much less than the tray spacing which is 12 inch, there would be no operational problem and the liquid flooding is regulated.

- Weeping Check:

An analysis is done to check for the operation to be above the weeping and dumping points and avoid excessive weeping.Surface Tension head h_{σ} is calculated and follwing condition is checked for weeping:
Condition for weeping:

$$
h_{\Delta P, d r y}+h_{\sigma} \geq 0.10392+0.21599 X-0.021675 X^{2}
$$

where $X=h_{\text {weir }}+h_{\text {crest }}+h_{\text {grad }}$
Now, $\sigma=0.02266 \mathrm{~N} / \mathrm{m}$

$$
\begin{gathered}
\rho_{L}=752.303 \mathrm{~kg} / \mathrm{m}^{3}=46.964 \mathrm{lb} / \mathrm{ft}^{3} \\
d_{o}=\frac{3}{16} \text { inch }=0.0047625 \mathrm{~m} \\
h_{\triangle P, d r y}=0.032197 \mathrm{~m}=1.377 \mathrm{inch} \\
h_{\text {weir }}=45 \mathrm{~mm}=0.045 \mathrm{~m}=1.771 \mathrm{in} \\
h_{\text {crest }}=1.60875 \text { inch }
\end{gathered}
$$

Calculation for X :

$$
X=1.771+1.60875+0=3.3804 \text { inch }
$$

Now, $0.10392+0.25199 \times 3.3804-0.021675 \times 3.3804^{2}=0.70806$
Now,

$$
h_{\sigma}=\frac{0.04 \times \sigma}{\rho_{L} \times d_{o}}=\frac{0.04 \times 22.66}{46.94 \times \frac{3}{16}}=0.102932 \mathrm{inch}
$$

Therefore $h_{\Delta P, d r y}+h_{\sigma}=1.3770+0.102932=1.479932$ inch
Condition:

$$
\begin{gathered}
h_{\triangle P, d r y}+h_{\sigma} \geq 0.10392+0.21599 X-0.021675 X^{2} \\
1.479932 \geq 0.70806
\end{gathered}
$$

Condition is satisfied. Hence, no weeping or dumping occurs.

- Stripping Section

Diameter of the column: $0.8131 m$

- Entrainment at a Flooding Point of 85\% :

Fractional Entrainment ψ is found out using the Fair's Entrainment Correlation (Figure 21). Abscissa $\left(F_{L V}=\frac{L}{G}\left(\frac{\rho_{G}}{\rho_{L}}\right)^{0.5}\right)$ is found out and for the corresponding percent of flood, fractional entrainment is found out.

$$
F_{L V}=0.8972 \times \frac{1.012}{841.75}^{0.5}=0.031
$$

Now, $F_{L V}=0.031$
Percent Flood $=\frac{\text { Actual Vapour Velocity based on net area }}{\text { Flooding Velocity }} \times 100$
We have taken the actual velocity to be 85% of the flooding velocity. Its a standard value to assume.
Therefore, for a percent flood of 85% -

$$
\psi=0.15=15 \%
$$

- Entrained Liquid:

$$
\begin{gathered}
\bar{L}_{\text {entrained }}=L_{e}=\frac{\psi}{1-\psi} \times \bar{L} \\
\bar{L}_{e}=\frac{0.15}{1-0.15} \times 346.582=61.16 \mathrm{kmol} / \mathrm{hr}
\end{gathered}
$$

- Amount Entrained on Top:

$$
\bar{L}+\bar{L}_{\text {entrained }}=\bar{L}+\bar{L}_{e}=346.582+61.16=407.74 \mathrm{kmol} / \mathrm{hr}
$$

- Column Cross Sectional Area:

$$
\begin{gathered}
A_{\text {Total }}=\frac{\pi \times \text { Dia }^{2}}{4}=\frac{\pi \times 0.8131^{2}}{4} \\
A_{\text {Total }}=0.51925 \mathrm{~m}^{2}
\end{gathered}
$$

- Downcomer Area:

$$
A_{d}=(1-\eta) \times A_{\text {Total }}
$$

η denotes the fraction of tray area excluding the downcomer portion. Generally its value lies between 0.8 to 0.95 . Assuming the value to be 0.9 .

$$
A_{d}=(1-0.9) \times 0.51925=0.051925 m^{2}
$$

- Weir Length and Height

For a distillation column operating above atmospheric pressure, weir height is keptin between 40 mm to 90 mm ; while 40 mm to 50 mm is more common.
Therefore, Weir height in the bottom section is also kept as $h_{w}=45 \mathrm{~mm}$.
Weir Length is normally kept in between 0.6 to 0.85 times the column diameter. For $\frac{A_{d}}{A_{\text {Total }}}=0.1,0.727$ can be used as the multiplying factor.
Therefore, Weir Length $=0.727 \times 0.8131=0.5911 \mathrm{~m}=23.2716 \mathrm{inch}=1.9393 \mathrm{ft}$

- Active Area of the Tray:

$$
\begin{gathered}
\eta=0.9 \\
A_{\text {Active }}=A_{\text {Total }} \times(1-2(1-\eta))
\end{gathered}
$$

Therefore, $A_{\text {Active }}=0.51925 \times(1-2(1-0.9))=0.4154 m^{2}$

- Total Area of holes:

$$
A_{\text {Holes }}=A_{\text {Active }} \times \beta
$$

The tray selected for the bottom section is a standard 14 gauge tray with thickness ($T_{\text {tray }}$) $=0.078$ in with a common hole diameter $d_{o}=\frac{3}{16}$ inch for normal operation and clean service. Pitch standard spacing between the holes is of $3.8 d_{o}=0.7125$ inches. A 2.5 inch space between the edge holes and the column wall is chosen, and a space of 4 inch between the edge hole and the tray weir. All these values are standard values used in the industry.
Generally $\beta=0.1$
Therefore, $A_{\text {Holes }}=0.1 \times 0.4154=0.04154 m^{2}$

- Vapor velocity through Tray Hole:

$$
\begin{gathered}
v=\frac{\bar{V} \times M_{\text {avg }}}{3600 \times \rho_{V} \times A_{\text {Holes }}} \\
v=\frac{131.5256 \times 22.7239}{3600 \times 1.012 \times 0.04154} \\
v=19.74 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

- Orifice Coefficient:

It is used in the calculation of dry pressure drop through the tray. Orifice Coefficient C_{o} is found out using the $\frac{T_{\text {Tray }}}{\text { HoleDiameter }}$ and $\frac{A_{\text {Holes }}}{A_{\text {Active }}}$. Refer to Figure 22 which gives the correlation used to find C_{o}
Now,

$$
\begin{gathered}
\frac{A_{\text {Holes }}}{A_{\text {Active }}}=\frac{0.04154}{0.4154}=0.1 \\
\frac{T_{\text {Tray }}}{\text { HoleDiameter }}=\frac{0.078}{0.1875}=0.416
\end{gathered}
$$

Using Figure 22,

$$
C_{o}=0.73
$$

Using a much accurate correlation given by Hughmark and O'Conell:

$$
C_{o}=0.85032-0.04231 \frac{d_{o}}{T_{\text {Tray }}}+0.00017954 \frac{d_{o}}{T_{\text {Tray }}}
$$

Calculating, $C_{o}=0.759$

- Total Head Loss of Liquid through dry Tray:

The following equation was given by Ludwig:

$$
h_{\triangle P, d r y}=\frac{0.003 \times v^{2} \times \rho_{V}\left(\frac{\rho_{W \text { ater }}}{\rho_{L}}\right)\left(1-\beta^{2}\right)}{C_{o}^{2}}
$$

Now, $v=19.74 \mathrm{~m} / \mathrm{s}=64.763 \mathrm{ft} / \mathrm{sec}$

$$
\rho_{V}=1.012 \mathrm{~kg} / \mathrm{m}^{3}=0.063177 \mathrm{lb} / f t^{3}
$$

Therefore, on calculating

$$
h_{\Delta P, d r y}=1.6229 \text { inch }=0.04122 \mathrm{~m}
$$

- Liquid Height over the weir:

Now, Liquid height over the weir $=h_{\text {crest }}=h_{o w}=0.48 F_{w}\left(Q_{L}\right)^{\frac{2}{3}}$ where $F_{w}=$ WeirCorrectionFactor

$$
Q_{L}=\frac{\text { Liquid Load in gallons per minute }}{\text { Length of the Weir }}
$$

For F_{w}, referring to Figure 23 :
Now Liquid Load in gallons per minute, L_{g} :

$$
\begin{gathered}
\bar{L}_{g}=\frac{\left(\bar{L}+\bar{L}_{e}\right) M_{\text {avg }}}{\rho_{L}} \\
\bar{L}_{g}=\frac{346.582 \times 22.7239}{841.75}=9.3563 \mathrm{~m}^{3} / \mathrm{hr}=2471.672 \text { gallons } / \mathrm{hr}=41.19 \text { gallons } / \text { minute }=0.09177
\end{gathered}
$$

Abscissa $=\frac{\bar{L}_{g}}{\text { WeirLength }, f t^{2.5}}$

$$
\text { Abscissa }=\frac{41.19}{1.9393^{2.5}}=7.8646
$$

Ratio weir length to tower diameter $=\frac{0.5911}{0.8131}=0.727$
Using Figure 23, $F_{w}=1.053$
Now, $h_{\text {ow }}=h_{\text {crest }}=0.48 F_{w}\left(Q_{L}\right)^{\frac{2}{3}}$

$$
\begin{gathered}
h_{\text {crest }}=0.48 \times 1.053 \times\left(\frac{41.19}{23.2716}\right)^{\frac{2}{3}} \\
h_{\text {crest }}=0.7395 \mathrm{in}=0.018783 \mathrm{~m}
\end{gathered}
$$

- Liquid Fractional Head Loss:

The flow area under the downcomer is calcualted as follows:

$$
A_{d u}=g a p \times W e i r \text { Length }
$$

The gap is usually 1 inch $=0.083 \mathrm{ft}$ in all the distillation columns working above the atmospheric pressure.
Therefore,

$$
A_{d u}=0.083 f t \times 1.9393 f t=0.16096 f t^{2}
$$

Fractional loss in liquid head, $h_{d u}=0.56 \times \frac{\bar{L}_{g}, f t^{3} / \mathrm{sec}^{2}}{A_{d u}}$

$$
h_{d u}=0.56 \times \frac{0.09177^{2}}{0.16096}=0.18203 \mathrm{inch}=0.0046235 \mathrm{~m}
$$

- Residence Time:

The total pressure head on the downcomer is the summation of all the hydrodynamic effects determined previously as follows:

$$
h_{d c}=h_{\Delta P, d r y}+h_{\text {weir }}+h_{\text {crest }}+h_{\text {grad }}+h_{d u}
$$

$h_{\text {grad }}$ is generally zero for sieve tray tower.

$$
h_{d c}=0.04122+0.045+0.018783+0.0046235=0.1096 m
$$

The residence time is calculated as follows:

$$
\begin{gathered}
\theta_{\text {res }}=\frac{A_{d} h_{d c} \rho_{L}}{\left(\bar{L}+\bar{L}_{e}\right) M_{\text {avg }}} \\
\theta_{\text {res }}=\frac{0.051925 \times 0.1096 \times 841.75}{407.74 \times 22.7239}=5.17 \times 10^{-04}=1.8609 \mathrm{sec}
\end{gathered}
$$

- Flooding Check:

As calculated above, total pressure head on the downcomer, $h_{d c}=0.1096 \mathrm{~m}$
The actual aerated head, $h_{d c, a e r a t e d}=\frac{h_{d c}}{\phi}$
where $\phi=$ froth density at normal operation
Now,

$$
\begin{gathered}
\phi=\frac{1}{\eta+1} \\
\eta=0.9
\end{gathered}
$$

Therefore, $\phi=\frac{1}{1+0.9}=0.52$

$$
h_{d c, a e r a t e d}=\frac{0.1096}{0.52}=0.2107
$$

Since, $h_{d c, \text { aerated }}=0.2107 \mathrm{~m}$ is less than tray spacing which is 12 inch $\approx 0.3 \mathrm{~m}$.
The aerated liquid head is much less than the tray spacing which is 12 inch, there would be no operational problem and the liquid flooding is regulated.

- Weeping Check:

An analysis is done to check for the operation to be above the weeping and dumping points and avoid excessive weeping.Surface Tension head h_{σ} is calculated and follwing condition is checked for weeping:
Condition for weeping:

$$
h_{\triangle P, d r y}+h_{\sigma} \geq 0.10392+0.21599 X-0.021675 X^{2}
$$

where $X=h_{\text {weir }}+h_{\text {crest }}+h_{\text {grad }}$
Now, $\sigma=0.03518 \mathrm{~N} / \mathrm{m}$

$$
\begin{gathered}
\rho_{L}=841.75 \mathrm{~kg} / \mathrm{m}^{3}=52.548 \mathrm{lb} / \mathrm{ft}^{3} \\
d_{o}=\frac{3}{16} \text { inch }=0.0047625 \mathrm{~m} \\
h_{\triangle P, d r y}=1.6229 \mathrm{inch} \\
h_{\text {weir }}=45 \mathrm{~mm}=0.045 \mathrm{~m}=1.771 \mathrm{in} \\
h_{\text {crest }}=0.7395 \mathrm{inch}
\end{gathered}
$$

Calculation for X :

$$
X=1.771+0.7395+0=2.5105 \text { inch }
$$

Now, $0.10392+0.25199 \times 2.5105-0.021675 \times 2.5105^{2}=0.6011$
Now,

$$
h_{\sigma}=\frac{0.04 \times \sigma}{\rho_{L} \times d_{o}}=\frac{0.04 \times 35.18}{52.548 \times \frac{3}{16}}=0.1428 \text { inch }
$$

Therefore $h_{\Delta P, d r y}+h_{\sigma}=1.6229+0.1428=1.7657$ inch
Condition:

$$
\begin{gathered}
h_{\triangle P, d r y}+h_{\sigma} \geq 0.10392+0.21599 X-0.021675 X^{2} \\
1.7657 \geq 0.6011
\end{gathered}
$$

Condition is satisfied. Hence, no weeping or dumping occurs.

7.9 Design Schematics for Rectifying Section

Following figures depict the tray layout and design schematics for the tray in the top of the column. Similar sketches can be drawn for the stripping section as well.

Figure 24: Column Design Schematics

Figure 25: Tray Design Schematics

8 Design of Auxilliary Equipment

Under this section, we will refer to the designing of the reboiler, condenser and the heat exchanger which is being used to cool down the formalin.

8.1 Reboiler Design

Duty of Reboiler (Refer to Energy Balance of Distillation Column) $=1353.295 \mathrm{~kW}$
Tube Side Fluid: Medium Pressure Steam ; Shell Side Fluid: Bottom Stream Coming out of distillation column

We have decided to use a Kettle typeof Reboiler because it is economically more compatible with our project. For a thermosyphon reboiler, we need to put a reboiler at a certain height so that gravitational force can work. To avoid such a situation, we have selected kettle reboiler. Also, the pressure drop in the shell side is negligible for a kettle type of reboiler.

Now, Medium pressure Steam is used to vaporize the bottom stream coming from distillation column.

Temperature of the Steam $=180^{\circ} \mathrm{C}$ Pressure of the Steam $=45 \mathrm{psi}=3.102 \mathrm{Bar}$
Steam Required $=\frac{\phi_{b}}{\lambda_{s}}$
From Steam Table:

$$
\lambda_{s}=2159.982 \mathrm{~kJ} / \mathrm{kg}
$$

Hence, Steam Required: $\frac{1353.295}{2159.982}=0.6265 \mathrm{~kg} / \mathrm{s}=2255.51 \mathrm{~kg} / \mathrm{hr}$
For the first trial Calculations, Assume $U_{o}=1500 \frac{W}{m^{2}{ }^{\circ} \mathrm{C}}$
For a reboiler, generally $\triangle T_{m}=35^{\circ} \mathrm{C}$
Therefore, $A_{o}=\frac{\phi_{b}}{U_{o} \times \Delta T_{m}}=\frac{1353.295 \times 10^{3}}{1500 \times 35}=25.77 \mathrm{~m}^{2}=A_{o, p r o v i d e d}$

$$
A_{o, \text { provided }}=25.77=N_{t} \pi d_{o} L
$$

Nominal U-Tube length used for a reboiler $=12 \mathrm{ft}=3.6576 \mathrm{~m}$
Using 14 Birmingham Wire gauge (BWG) specifications for tube:

$$
d_{o}=25.4 m m(1 \text { inch }) ; d_{i}=21.1836 \mathrm{~mm}(0.834 \mathrm{inch})
$$

To calculate N_{t} :

$$
\begin{gathered}
A_{o, \text { provided }}=N_{t} \pi d_{o} L \\
N_{t}=88.29 \approx 90(U-\text { tubes })
\end{gathered}
$$

Number of holes in tube sheet $=90 \times 2=180$
Use square pitch arrangement:

$$
\begin{gathered}
P_{t}=1.5 d_{o}=38.1 \mathrm{~mm} \\
\text { MaximumU }- \text { BendRadius }=1.5 d_{o}=38.1 \mathrm{~mm}
\end{gathered}
$$

- Calculation of Boiling Heat Transfer Coefficient

Now, $h_{o}=h_{n b o}=$ Nucleate Boiling Heat Transfer Coefficient for mixture $=f_{m} \times h_{n b}$ $h_{n b}$ is calcultated using Mostinski's Equation.

$$
\begin{gathered}
h_{n b}=0.104 \times\left(p_{c m}\right)^{0.69}\left(\frac{\phi_{b}}{A}\right)^{0.7}\left[1.8\left(\frac{P}{P_{c m}}\right)^{0.17}+4\left(\frac{P}{P_{c m}}\right)^{1.2}+10\left(\frac{P}{P_{c m}}\right)^{10}\right] \\
\frac{\phi_{b}}{A}=\frac{1353.295 \times 10^{3}}{25.77}=52514.35 \mathrm{~W} / \mathrm{m}^{2}
\end{gathered}
$$

$\mathrm{P}=1.3973 \mathrm{~atm}=1.4158 \mathrm{Bar}$
To calculate $P_{c m}$, use Kay's Law:

$$
P_{c m}=\sum y_{i} P_{c i}
$$

Table 19: Calculation of Critical Pressure for a mixture

Component	y_{i}	$P_{c i}$ in Bar	$y_{i} \times P_{c i}$
Methanol	0.0001724	81	0.013932
Water	0.6060	220.584	133.673
Formaldehyde	0.39372	75.6	

Now, $P_{c m}=\sum y_{i} P_{c i}=163.452$ Bar
Therefore, $\frac{P}{P_{c m}}=8.661 \times 10^{-3}$
$f_{m}=$ Correction Factor

$$
f_{m}=\exp \left(-0.0083\left(T_{b o}-T_{b i}\right)\right.
$$

where $T_{b o}=$ Temperature of the vapour leaving the reboiler $=110^{\circ} \mathrm{C}$
$T_{b i}=$ Temperature of the liquid entering the reboiler $=108.7^{c} \mathrm{ircCr}$
Therefore, $f_{m}=0.989$
Now, Substituting the value of $P, P_{c m}$ in the expression for $h_{n b}$:
On calculation:

$$
h_{n b}=5785.578 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

Now, $h_{b}=f_{m} \times h_{n b}$

$$
h_{b}=5695.23 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

For condensation of steam, the generally taken value for $h_{i^{\prime}}$. This term includes fouling also.

$$
h_{i^{\prime}}=6000 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

Also, the general Shell Side fouling Coefficient, $h_{o d}=3000 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$

Now,

$$
\frac{1}{U_{o}}=\frac{1}{h_{b}}+\frac{1}{h_{o d}}+\frac{d_{o} \ln \frac{d_{o}}{d_{i}}}{2 \times k}+\frac{d_{o}}{d_{i}} \frac{1}{h_{i^{\prime}}}
$$

Substituting the values, U_{o} is found out to be $1335.41 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$.
Referring to literature, the value of U_{o} calculated lies within the normal range.

- Calculation of Heat Transfer Area Required Heat Transfer Area Required:

$$
A_{R e q}=\frac{\phi_{b}}{U_{o} \times \triangle T_{m}}=\frac{1353.295 \times 10^{3}}{1335.41 \times 35}=28.95 \mathrm{~m}^{2}
$$

To decrease the area required, we have to increase the pressure and temperature of the steam.
Therefore, taking the steam at 4 Barand $200^{\circ} \mathrm{C}, \lambda_{s}=2132.95 \mathrm{~kJ} / \mathrm{kg}$
Amount of steam required $=\frac{\phi_{b}}{\lambda_{s}}=\frac{1353.295}{2132.95}=0.6347 \mathrm{~kg} / \mathrm{s}=2285.16 \mathrm{~kg} / \mathrm{hr}$
Now, temperature drivng force for steam at 4 bar, $\Delta T_{m}=40^{\circ} \mathrm{C}$ Therefore, Area Required $=$ $\frac{1353.295 \times 10^{3}}{1335.41 \text { times } 40}=25.33 \mathrm{~m}^{2}$
Now, Percent Excess Heat Transfer Area $=\frac{25.77}{25.33}-1 \times 100=1.73 \%$

- Calculation of Heat Flux

Actual heat Flux $=\frac{\phi_{b}}{A_{o, p r o v i d e d}}=\frac{1353.295 \times 10^{3}}{25.77}=52514.35 \mathrm{~W} / \mathrm{m}^{2}$
Actual heat flux should be less than 0.7 times the critical heat flux to function properly. Critical Heat Flux:

$$
\left(\frac{\phi}{A}\right)_{c}=K_{b}\left(\frac{P_{t}}{d_{o}}\right)\left(\frac{\lambda}{\sqrt{N_{t}}}\right)\left(\sigma\left(\rho_{L}-\rho_{V}\right)\left(\rho_{v}\right)^{2}\right)^{0.25}
$$

Now, $K_{b}=$ Constant, 0.44 forsquarepitcharrangement

$$
P_{t}=
$$

Tube Pitch, $\mathrm{mm}=38.1 \mathrm{~mm}$

$$
d_{o}=
$$

Tube Outside Diameter, $\mathrm{mm}=25.4 \mathrm{~mm}$

$$
\begin{gathered}
N_{t}=180 \\
g=9.81 \mathrm{~m} / S^{2}
\end{gathered}
$$

Liquid Density=

$$
\rho_{L}=841.75 \mathrm{~kg} / \mathrm{m}^{3}
$$

Vapour Density $=\rho_{V}=1.012 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\sigma=0.03518 N / m
$$

Heat of vaporization Calculation:

Table 20: Heat of Vaporization calculation for Bottom Stream

Component	x_{i}	T_{c} in K	T_{1} in K	$l \lambda$ at T_{1}
Methanol	0.0001724	512.6	338.15	35278
Formaldehyde	0.39372	410.150	253.7	23300
Water	0.6060	647.15	373.15	

Using Watson's Equation:

$$
\begin{gathered}
\lambda_{\text {methanol }}=31556.90 \mathrm{~kJ} / \mathrm{kmol} \\
\lambda_{\text {formaldehyde }}=12059.72 \mathrm{~kJ} / \mathrm{kmol} \\
\lambda_{\text {water }}=40117.2 \mathrm{~kJ} / \mathrm{kmol}
\end{gathered}
$$

Now, $\lambda_{\text {avg }}=29064.60 \mathrm{~kJ} / \mathrm{kmol}=\frac{29064.60}{22.7239}=1279032.208 \mathrm{~J} / \mathrm{kg}$ Substituting the values for the calculation of critical heat flux:
Calculating $\left(\frac{\phi}{A}\right)_{c}=261237.669 \mathrm{~W} / \mathrm{m}^{2}$
Now, 0.7 times the critical flux value $=182866.36 \mathrm{~W} / \mathrm{m}^{2}$
Actual heat flux is less than 0.7 times the critical flux value.
Therefore, the reboiler design is acceptable as the actual flux value is very less than the critical flux value.

- Calculation of Tube bundle Diamter

$$
n_{b}=\frac{P_{t}+\sqrt{P_{t}^{2}+\pi N_{t} P_{t}^{2}}}{\frac{\pi}{2}}+d_{o}
$$

Now, $N_{t}=180, P_{t}=38.1 \mathrm{~mm}, d_{o}=25.4 \mathrm{~mm}$
On calculating:

$$
n_{b}=627 \mathrm{~mm}
$$

Now, if the actual heat flux is greater than $40000 \mathrm{~W} / \mathrm{m}^{2}$, the ratio of shell inner diameter to Tube bundle Diameter is taken to be around 1.7 to 2. Taking 1.8 as the ratio:
Shell Dimater $=1.8 \times n_{b}=1.8 \times 627=1130 \mathrm{~mm}$

- Checking of Liquid Entrainment

For no entrainment : Actual velocity should be less than Maximum velocity ($v_{\max }$)
Actual Velocity, $\mathrm{v}=\frac{\dot{m} v}{\rho_{V} \times L^{\prime} \times x}$
Tube length, $L^{\prime}=\frac{3.6576}{2}=1.8288 \mathrm{~m}$
Let the liquid level be 800 mm .

$$
y=800-\frac{1130}{2}=235 \mathrm{~mm}
$$

Figure 26: Reboiler Geometry

From the geometry of the figure:

$$
\left(\frac{x}{2}\right)^{2}+235^{2}=\left(\frac{1130}{2}\right)^{2}
$$

On solving,

$$
x=1027.61 \mathrm{~mm}=1.0276 \mathrm{~m}
$$

Therefore, Liquid Surface Area $=L^{\prime} \times x=1.8793 m^{2}$

$$
\begin{gathered}
v_{\max }=0.2 \times \sqrt{\left(\frac{\rho_{L}-\rho_{V}}{\rho_{V}}\right)=5.764 \mathrm{~m} / \mathrm{s}} \\
v=\frac{\bar{V} \times M_{\text {avg }}}{\rho_{V} \times \text { Liquid Surface Area }} \\
v=\frac{131.5256 \times 22.7239}{1.012 \times 1.8793}=1571.50 \mathrm{~m} / \mathrm{hr}=0.436 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Since v is less than $v_{\max }$, no liquid entrainment occurs.

- Shell Side Pressure Drop

Shell Side pressure drop is negligible in case of kettle reboiler.

- Tube Side pressure Drop

Tube side pressure drop is calculated using the equation:

$$
\begin{gathered}
\triangle P_{t}=0.5 \triangle P_{t}^{\prime}=0.5 N_{p}\left(8 J_{f} \frac{L}{d_{i}}\left(\frac{\mu}{\mu_{w}}\right)^{-m}+2.5\right) \frac{\rho u_{t}^{2}}{2} \\
N_{p}=2 ; L=1.8288 m ; d_{i}=0.0211836 \mathrm{~m}
\end{gathered}
$$

At 4 Bar, $\rho=\frac{1}{\text { Specific Volume }}=\frac{1}{0.462}=2.164 \mathrm{~kg} / \mathrm{m}^{3}$
Tube Side Mass velocity,

$$
G_{t}=\frac{\dot{m}_{s}}{\frac{N_{t}}{N_{p}} \times \frac{\pi}{4} d_{i}^{2}}
$$

Substitute the values in G_{t}, we get $20.009 \mathrm{~kg} / \mathrm{m}^{2} . s$
Tube Side Reynold's Number:

$$
\frac{d_{i} \times G_{t}}{\mu}
$$

$$
\mu_{\text {water }}=2.5091 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{s} ; \mu_{\text {methanol }}=0.00021412 \mathrm{~kg} / \mathrm{m} . \mathrm{s} ; \mu_{\text {formaldehyde }}=0.00258 \mathrm{~kg} / \mathrm{m} . \mathrm{s}
$$

Therefore $\mu_{\text {mix }}=1.167 \times 10^{-4} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$
Therefore, Reynold's Number $=364.400$
Referring to Figure 27, we get the value of $j_{f}=0.024$
Now, $\mu_{\text {vapour }}=1.608 \times 10^{-5}$ Pa.s

$$
u_{t}=\frac{G_{t}}{\rho}=\frac{20.009}{2.164}=9.246 \mathrm{~m} / \mathrm{s}
$$

Substituting the corresponding values to get $\triangle P$, we get

$$
\triangle P=360.13 P a=0.360 k P a
$$

This pressure drop value is acceptable.

Figure 27: Tube Side Friction Factor [8]

8.2 Condenser Design

Heat Duty of the Condenser (Refer to the Energy Balance Calculation) $=1296.331 \mathrm{~kW}$
Water at $32^{\circ} \mathrm{C}$ to be reduced to $40^{\circ} \mathrm{C}$.

$$
\begin{gathered}
\dot{m}_{w} C_{p w}\left(t_{0}-32\right)=1296.331 \mathrm{~kW} \\
C_{p w}=4.18 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K} \\
\dot{m}_{w}=\frac{1296.331}{4.188 \times 8}=38.6 \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

Referring to the data listing the general overall heat transfer coefficients, we take $U_{o}=800 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
LMTD for condensation $=\frac{30.94-38.94}{\ln (30.94 / 38.94)}=34.78^{\circ} \mathrm{C}$

- Calculation of Condenser Area

Area based on assumed value of U_{o} :

$$
A_{c}=\frac{\text { Heat Duty }}{U_{o} \times L M T D}=\frac{1296.331 \times 1000}{800 \times 3478}=46.59 \mathrm{~m}^{2}
$$

Its a horizontal condenser. Therefore

$$
A=46.59=N_{t} \pi d_{o} L
$$

Outer Diameter, $d_{o}=19.05 \mathrm{~mm}=\frac{3}{4}$ inch

Length, $\mathrm{L}=6 \mathrm{ft}=1.83 \mathrm{~m}$
Therefore, $N_{t}=\frac{46.59}{\pi \times 0.019505 \times 1.83}=425.7 \approx 426$ Tubes
We selected triangular pitch (Clean Shell Fluid, hence, easier cleaning).

$$
\begin{aligned}
& k_{1}=0.249 \\
& n_{1}=2.207
\end{aligned}
$$

Therefore, $P_{t}=1.25 d_{o}=23.8125 \mathrm{~mm}$
Number of Tube Passes=2 (first trial calculation)

- Calculation of Tube Bundle Diameter

$$
\begin{gathered}
D_{b}=d_{o}\left(\frac{N_{t}}{K_{1}}\right)\left(\frac{1}{n_{1}}\right) \\
D_{b}=19.05\left(\frac{426}{0.249}\right)\left(\frac{1}{2.207}\right)=556.327 \mathrm{~mm}
\end{gathered}
$$

Clearance between shell and tube Bundle $=13 \mathrm{~mm}$
Therefore, Shell Inside Diameter $=570 \mathrm{~mm}$

- Tube Side Heat Transfer Coefficient

Inner and outer Diameter are taken to be 16 BWG.

$$
\begin{gathered}
A_{t}=\frac{N_{t}}{N_{p}} \times \frac{\pi}{4} d_{i}^{2} \\
A_{t}=\frac{426}{2} \times \frac{\pi}{4} \times(0.015748)^{2}=0.04148 \mathrm{~m}^{2}
\end{gathered}
$$

Tube Mass velocity=

$$
\begin{gathered}
G_{f}=\frac{\dot{m}}{A_{t}}=\frac{38.6}{0.04148}=930.39 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s} \\
u_{t}=\frac{G_{t}}{\rho}=\frac{930.39}{992.6}=0.937 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

which is less than $1 \mathrm{~m} / \mathrm{s}$.
To avoid fouling velocity should be greater than $1 \mathrm{~m} / \mathrm{s}$.
Therefore, to increase the number of tube side passes from 2 to 4 .
Now, $N_{p}=4, A_{t}=0.02074 m^{2}$
Therefore new bundle diameter, $d_{b}=19.05 \times\left(\frac{426}{0.175}\right)\left(\frac{1}{2.285}\right)=577.9 \approx 578 \mathrm{~mm}$
Clearance $=15 \mathrm{~mm}$
Shell Inside Diameter $=578+15=593 \mathrm{~mm}$ (revised)

$$
G_{t}=\frac{38.6}{0.02074}=1861.13 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s}
$$

$$
u_{t}=\frac{1861.13}{992.9}=1.875 \mathrm{~m} / \mathrm{s}
$$

Reynolds Number $=\frac{d_{i} \times G_{t}}{\mu}$

$$
\begin{gathered}
\mu=0.72 \times 10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s} \\
R e=\frac{0.015748 \times 1861.13}{0.72 \times 10^{(-3)}}=40707.04
\end{gathered}
$$

Prandtl Number:
Thermal Conductivity of water, $k=0.6228 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

$$
\operatorname{Pr}=\frac{C_{p} \times \mu}{k}=\frac{4.1868 \times 0.72 \times 10^{-3} \times 10^{3}}{0.6228}=4.84
$$

Using Dittus-Boelter Equation,

$$
\frac{h_{i} d_{i}}{k}=0.023 \operatorname{Re}^{0} .8 \operatorname{Pr}^{0} .3\left(\frac{\mu}{\mu_{w}}\right)^{0} .14
$$

Neglecting, $\frac{\mu}{\mu_{w}}$, since it will be close to unity.
Calculating for h_{i}, we get $7457.36 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

- Shell Side Condensation Coefficient

For condensation, calculation of mean temperature of condensate film: Let $t_{w}=$ tube wall temperature, ${ }^{\circ} \mathrm{C}$
Assumed for first trial calculation:

$$
h_{c o}=1500 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
$$

Heat Transfer rate through condensate film=Overall Rate of heat transfer

$$
h_{c o} A_{c}\left(t_{c}-t_{w}\right)=U_{o} A_{c}\left(t_{c}-t_{a v g}\right)
$$

where, $t_{c}=$ Condensation temperature of vapour on shell in ${ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& t_{a v g}=\text { average tube side fluid temperature for condensation zone in }{ }^{\circ} \mathrm{C} \\
& \qquad 1500 \times 46.59 \times\left(70.94-t_{w}\right)=800 \times 46.59 \times\left(70.94-\frac{32+40}{2}\right)
\end{aligned}
$$

Solving, $t_{w}=52.305^{\circ} \mathrm{C}$
Now, Mean temperature for condensate film:

$$
\frac{t_{c}+t_{w}}{2}=\frac{70.94+52.305}{2}=61.6225^{\circ} \mathrm{C}
$$

Properties of Methanol- water at $61.6225^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\mu_{L} & =0.308459 \mathrm{mPa} \\
\rho_{L} & =751.986 \mathrm{~kg} \cdot \mathrm{~m}^{3} \\
k_{L} & =0.203 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Shell Side Condensation Coefficient:

$$
h_{c o}=0.95 k_{L}\left(\frac{\rho_{L}\left(\rho_{L}-\rho_{V}\right) g}{\mu_{L} \tau_{h}}\right)\left(\frac{1}{3}\right) N_{r}\left(\frac{-1}{6}\right)
$$

Now,

$$
\tau_{h}=\frac{W_{c}}{L N_{t}}=\frac{131.5256 \times 30.644}{3600 \times 1.83 \times 426}=1.43612 \times 10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s}
$$

Average Number of Tubes in Vertical Rows:

$$
N_{r}=\frac{2}{3} N_{r}^{\prime}=\frac{2}{3} \times \frac{D_{o}}{P_{t}}=\frac{2}{3} \times \frac{557}{23.8125}=15.59 \approx 15.6
$$

Substituting all the parameters in the $h_{c o}$ equation, on calculating:

$$
h_{c o}=2831.1 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}
$$

The calculated value is near to assumed value.
Therefore, we can use this value in our subsequent calculations.
Overall heat transfer coefficient:

$$
\frac{1}{U_{o}}=\frac{1}{h_{o c}}+\frac{1}{h_{o d}}+\frac{d_{o} \ln \frac{d_{o}}{d_{i}}}{2 \times k}+\frac{d_{o}}{d_{i}} \frac{1}{h_{i}}+\frac{d_{o}}{d_{i}} \frac{1}{h_{i d}}
$$

Taking the values of $h_{o d}=10000 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$ and $h_{i d}=4000 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$
Substituting all the values, we get $U_{o}=976.08 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$.
Area required heat transfer $=\frac{1296.331 \times 1000}{976.08 \times 34.78}=38.175 \mathrm{~m}^{2}$
Percent Excess Heat transfer area should be atleast 15%.
Therefore, we can increase tube length.

$$
\begin{gathered}
\frac{\text { Area }_{\text {before }}}{\text { Area }}=\frac{46.59}{38.175}=1.2204 \\
\frac{L_{\text {new }} \text { ore }}{} \\
L_{\text {old }}
\end{gathered}=1.15 \times \frac{A_{\text {new }}}{A_{\text {before }}}=1.724 \mathrm{~m}
$$

Now, L is kept 1.83 m .

- Shell Side Pressure Drop

Shell Side flow area:
Inner shell diameter $=0.593 \mathrm{~m}$

$$
A_{s}=\frac{\left(P_{t}-d_{o}\right) \times B_{s} \times D_{s}}{P_{t}}=\frac{(23.8125-19.05) \times 0.593 \times 0.593}{23.8125}=0.0703298 \mathrm{~m}^{2}
$$

Shell Side Velocity:

$$
\begin{gathered}
G_{s}=\frac{\dot{m}}{A_{s}}=\frac{131.5256 \times 30.644}{3600 \times 0.0703298}=15.9189 \mathrm{~kg} / \mathrm{m}^{2} . \mathrm{s} \\
u_{s}=\frac{G_{s}}{\rho_{V}}=\frac{15.9189}{1.47}=10.829 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Equivalent Diameter of Triangular Pitch Arrangement:

$$
\begin{gathered}
d_{e}=\frac{1.1}{d_{o}} \times\left(P_{t}^{2}-0.907 d_{o}^{2}\right) \\
d_{e}=\frac{1.1}{19.05} \times\left(23.8125^{2}-0.907 \times 19.05^{2}\right) \\
d_{e}=13.73 \mathrm{~mm} \\
\text { ReynoldsNumber }=\frac{d_{e} \times G_{s}}{\mu} \\
\mu=1.1 \times 10^{-2} c P \\
R e=\frac{13.73 \times 10^{-3} \times 15.9189}{1.1 \times 10^{-5}}=19869.68
\end{gathered}
$$

Referring to Figure 28, for 25% cut segmental baffle

$$
\begin{gathered}
j_{f}=0.042 \\
\triangle P_{s}=8 j_{f} \times \frac{D_{s}}{d_{e}} \frac{L}{B_{s}} \frac{\rho_{V} u_{s}^{2}}{2}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14}
\end{gathered}
$$

Neglecting $\frac{\mu}{\mu_{w}}$, as its value is close to unity.
Calculating,

$$
\begin{gathered}
\triangle P_{s}=8 \times 0.042 \times \frac{593}{13.736} \times \frac{1.83}{0.593} \times \frac{10.829^{2} \times 1.47}{2} \\
\triangle P_{s}=918.638 P a=0.0918 k P a
\end{gathered}
$$

This is an acceptable value for shell side pressure drop.

Figure 28: Shell-Side friction factors, segmental baffles [8]

- Tube Side pressure Drop

Tube side pressure drop is calculated using the following equation:

$$
\begin{gathered}
\triangle P_{t}=N_{p}\left(8 J_{f} \frac{L}{d_{i}}\left(\frac{\mu}{\mu_{w}}\right)^{-m}+2.5\right) \frac{\rho u_{t}^{2}}{2} \\
N_{p}=4 \\
R e=40707.4
\end{gathered}
$$

Neglecting $\frac{\mu}{\mu_{w}}$, as its value is close to unity. Referring to Figure 27:

$$
\begin{gathered}
J_{f}=3.5 \times 10^{-} 3 \\
L=1.83 \mathrm{~m} \\
d_{i}=15.748 \mathrm{~mm} \\
\rho_{\text {water }}=993.684 \mathrm{~kg} / \mathrm{m}^{3} \\
u_{t}=1.875 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Substituting the values in the $\triangle P_{t}$ expression, we get

$$
\triangle P_{t}=40200.5 P a=40.2 k P a
$$

This pressure drop is acceptable.

- Condenser Specifications:

- 1-4 fixed tube shell Heat Exchanger
- Shell Inner Diameter=593 mm
- Baffles=25 \% cut segmental
- Baffle Spacing=593 mm
- Tube O.D=19.05 mm-16 BWG
- Tube Length $=1.83 \mathrm{~m}=6 \mathrm{ft}$
- Triangular Pitch Arrangement, Pitch $=1.25 \times d_{o}=23.8125 \mathrm{~mm}$
- Number of Tubes: 426

8.3 Heat Exchanger Design

We will be designing the heat exchanger which is being used to cool the temperature of the formaldehyde dissolved in water stream after the distillation column.

Fluid Allocation: Shell=Cooling Water; Tube=Formalin
Duty of the heat exchanger: $905400 \mathrm{~kJ} / \mathrm{hr}=251.1 \mathrm{~kW}$
We are taking the cooling water at $15{ }^{\circ} \mathrm{C}$ and leaves the heat exchanger at $44^{\circ} \mathrm{C}$. The process fluid enters at $48^{\circ} \mathrm{C}$ and leaves at $30^{\circ} \mathrm{C}$.

Stream 19

$$
\mathrm{T}=48^{\circ} \mathrm{C}
$$

$\mathbf{N}_{\text {Methanol }}=0.037174 \mathrm{kmol} / \mathrm{hr}$
$\mathbf{N}_{\text {Formaldehyde }}=84.64511 \mathrm{kmol} / \mathrm{hr}$
$\mathbf{N}_{\text {water }}=239.5409 \mathrm{kmol} / \mathrm{hr}$
$\mathbf{N}_{\text {Total }}=324.1244 \mathrm{kmol} / \mathrm{hr}$

$$
\begin{aligned}
& \text { Cold Utility, Water } \\
& \left(15^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Figure 29: Heat Exchanger cooling the Formalin Stream from $48^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$
Calculating LMTD:

$$
L M T D=\frac{(48-44.4)-(30-15)}{\ln \frac{(48-44.4)}{(30-15)}}=8.1^{\circ} \mathrm{C}
$$

Correction Factor:

$$
\begin{aligned}
R & =\frac{T_{1}-T_{2}}{t_{2}-t_{1}}=\frac{15-44.4}{30-48}=1.633 \\
S & =\frac{t_{2}-t_{1}}{T_{1}-t_{1}}=\frac{30-48}{15-48}=0.5454
\end{aligned}
$$

Referring to Figure 30 , $\mathrm{F}=0.98$
Therefore corrected LMTD $=\triangle T=0.9 \times 8.1=7.84$

- Calcualtion of Mass flow rate of water required

We know that

$$
\begin{aligned}
& Q=\dot{m} C_{p} \triangle T \\
& Q=251.1 k W
\end{aligned}
$$

Figure 30: Temperature Correction Factor-one shell pass,two or more even tube passes [12]

Water: $C_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$
Therefore, Substituting all the values in the equation above:

$$
\dot{m}=6.012 \mathrm{~kg} / \mathrm{s}
$$

- Calculation of Heat Transfer Area Required

Assuming overall heat transfer coefficient to be $800 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$

$$
\begin{gathered}
A=\frac{Q}{U \times \triangle T} \\
A=\frac{251.1 \times 1000}{800 \times 7.84}=43.59 \mathrm{~m}^{2} \approx 44 \mathrm{~m}^{2}
\end{gathered}
$$

Now, taking the Outer Diameter $d_{o}=20 \mathrm{~mm}$
Inner Diameter $d_{i}=16 \mathrm{~mm}$
$\mathrm{L}=1.83 \mathrm{~m}=12 \mathrm{ft}$
Area of one tube $=\pi \times d_{o} \times L=0.114 m^{2}$
Number of tubes $=\frac{44}{0.114}=385.96 \approx 386$ Tubes

- Calcualtion of Tube Bundle Diameter

Taking triangular pitch,

$$
n_{1}=2.207, k_{1}=0.249
$$

Therefore, $D_{b}=d_{o}\left(\frac{N_{t}}{k_{1}}\right)\left(\frac{1}{n_{1}}\right)$
On soving, $D_{b}=557.96 \mathrm{~mm}$
Shell Diameter, taking a clearance of $40 \mathrm{~mm}=557.96+40=597.96 \mathrm{~mm} \approx 600 \mathrm{~mm}$

- Tube Side Coefficient

Mean Formalin Temperature $=\frac{48+20}{2}=39^{\circ} \mathrm{C}$
Tube Cross Sectional Area $=\frac{\pi}{4} \times d_{i}^{2}=\frac{\pi}{4} \times 16^{2}=201 \mathrm{~mm}^{2}$
Tube per pass $=\frac{386}{2}=193$
Total Flow Area=Tube per pass \times Tube cross sectional area

$$
=193 \times 201 \times 10^{-6}=0.03879 \mathrm{~m}^{2}
$$

Formalin Mass velocity $=\frac{\text { Mass Flow Rate }}{\text { Flow Area }}=\frac{4881.8}{0.03879} \times 3600=34.95 \mathrm{~kg} / \mathrm{sm}^{2}$
Density $=\frac{1}{\sum \frac{w_{i}}{\rho_{i}}}=\frac{1}{\frac{0.5195}{798}+\frac{0.48}{995}}=882 \mathrm{~kg} / \mathrm{m}^{3}$
Formalin Linear Velocity $=\frac{34.95}{882}=0.039 \mathrm{~m} / \mathrm{s}$
Reynolds Number $=\frac{d_{i} \times \rho \times u}{\mu}$

$$
\begin{gathered}
\mu=0.311695 \times 10^{-3} \mathrm{~kg} / \mathrm{m} . \mathrm{s} \\
\operatorname{Re}=\frac{882 \times 0.039 \times 16 \times 10-3}{\left.0.311695 \times 10^{(}-3\right)}=1765.72
\end{gathered}
$$

Prandtl Number:
Thermal Conductivity of water, $k=0.609 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$

$$
\operatorname{Pr}=\frac{C_{p} \times \mu}{k}=\frac{5.2 \times 1000 \times 0.311695 \times 10^{-3}}{0.609}=2.66
$$

Using Dittus-Boelter Equation,

$$
\frac{h_{i} d_{i}}{k}=j_{h} \operatorname{RePr}^{0} .3\left(\frac{\mu}{\mu_{w}}\right)^{0.14}
$$

Neglecting, $\frac{\mu}{\mu_{w}}$, since it will be close to unity.
Referring to Figure 31,

$$
\begin{gathered}
\frac{L}{d_{i}}=\frac{1.83 \times 1000}{16}=114.3 \\
j_{h}=3 \times 10^{-3}
\end{gathered}
$$

Figure 31: Tube Side Heat Transfer Factor [12]

Substituting in the expression above for h_{i}, we get:

$$
h_{i}=278.4 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}
$$

- Shell Side Coefficient

Baffle Spacing $B_{s}=\frac{D_{s}}{3}=\frac{0.600}{3}=0.2 \mathrm{~m}$
Tube Pitch $=1.25 \times d_{o}=25 \mathrm{~mm}$
Cross Flow Rate, $A_{s}=\frac{d_{o}-d_{i}}{d_{i}} \times D_{s} B_{s}$

$$
A_{s}=\frac{25-20}{20} \times 0.6 \times 02=0.03 \mathrm{~m}^{2}
$$

Mass Velocity $G_{s}=\frac{6.012}{0.03}=200 \mathrm{~kg} / \mathrm{sm}^{2}$
Equivalent Diameter of Triangular Pitch Arrangement:

$$
\begin{gathered}
d_{e}=\frac{1.1}{d_{o}} \times\left(P_{t}^{2}-0.907 d_{o}^{2}\right) \\
d_{e}=\frac{1.1}{20} \times\left(25^{2}-0.907 \times 20^{2}\right) \\
d_{e}=14.4 \mathrm{~mm}
\end{gathered}
$$

Mean Shell-Side temperature $=\frac{15+44.4}{2}=29.7^{\circ} \mathrm{C}$ Water Density $=992 \mathrm{~kg} / \mathrm{m}^{3}$
Therefore $u=\frac{200}{992}=0.189 \mathrm{~m} / \mathrm{s}$ Viscosity $=5.3 \times 10^{-4} \mathrm{~kg} / \mathrm{ms}$
Heat Capacity $=4.18 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$

Thermal Conductivity $=0.609 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \operatorname{Re}=\frac{\rho v d}{\mu}=\frac{992 \times 0.189 \times 14.4 \times 10^{-3}}{5.3 \times 10^{-4}}=5433.9 \\
& \operatorname{Pr}=\frac{C_{p} \mu}{k}=\frac{4.18 \times 1000 \times 5.3 \times 10^{-4}}{0.609}=3.36377
\end{aligned}
$$

For 25 \% Segmental Baffle Cut, referring to Figure 28,

$$
\begin{gathered}
j_{h}=8 \times 10-3 \\
\frac{h_{i} d_{i}}{k}=j_{h} R e_{P r}{ }^{0} .3\left(\frac{\mu}{\mu_{w}}\right)^{0.14}
\end{gathered}
$$

Neglecting, $\frac{\mu}{\mu_{w}}$, since it will be close to unity.
Solving for $h_{i}=2813.36 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$
Overall heat transfer coefficient:

$$
\frac{1}{U_{o}}=\frac{1}{h_{o}}++\frac{d_{o} \ln \frac{d_{o}}{d_{i}}}{2 \times k}+\frac{d_{o}}{d_{i}} \frac{1}{h_{i}}
$$

Now $h_{o}=2813.3 W / m^{2 \circ} \mathrm{C}$

$$
h_{i}=278.4 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}
$$

Solving fro U_{o}, we get $204.72 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$

- Tube Side Pressure Drop

Tube side pressure drop is calculated using the following equation:

$$
\begin{gathered}
\triangle P_{t}=N_{p}\left(8 J_{f} \frac{L}{d_{i}}\left(\frac{\mu}{\mu_{w}}\right)^{-m}+2.5\right) \frac{\rho u_{t}^{2}}{2} \\
N_{p}=2 \\
R e=1765.7
\end{gathered}
$$

Neglecting $\frac{\mu}{\mu_{w}}$, as its value is close to unity. Referring to Figure 27:

$$
\begin{gathered}
J_{f}=7 \times 10^{-} 3 \\
L=1.83 \mathrm{~m} \\
d_{i}=16 \mathrm{~mm} \\
\rho_{\text {water }}=882 \mathrm{~kg} / \mathrm{m}^{3}
\end{gathered}
$$

$$
u_{t}=0.039 \mathrm{~m} / \mathrm{s}
$$

Substituting the values in the $\triangle P_{t}$ expression, we get

$$
\triangle P_{t}=11940 P a=11.94 k P a
$$

This pressure drop is acceptable.

- Shell Side Pressure Drop

Referring to Figure 28, for 25% cut segmental baffle

$$
\begin{gathered}
j_{f}=0.008 \\
\triangle P_{s}=8 j_{f} \times \frac{D_{s}}{l_{b}} \frac{\rho_{V} u_{s}^{2}}{2}\left(\frac{\mu}{\mu_{w}}\right)^{-0.14}
\end{gathered}
$$

Neglecting $\frac{\mu}{\mu_{w}}$, as its value is close to unity.
Calculating,

$$
\begin{gathered}
\triangle P_{s}=8 \times 0.008 \times \frac{0.6}{0.2} \times \frac{0.2^{2} \times 992}{2} \\
\triangle P_{s}=3800 P a=3.80 k P a
\end{gathered}
$$

This is an acceptable value for shell side pressure drop.

- Heat Exchanger Specifications

Load=251.5 kW; 1-2 Fixed Tube Shell Heat Exchanger

Tube Side Specifications

- Number of Tubes=386
- tube Pitch $=25 \mathrm{~mm}$
- Bundle Diameter $=0.557 \mathrm{~m}$
- Bundle Diameter Clearance=0.040m
- Number of tubes per pass=193
- Tube Side heat transfer coefficient $=278.4 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$
- Tube Side Pressure Drop= 11.94 kPa

Shell Side Specifications

- Shell Diameter=0.6m
- Baffle Spacing=0.2 m
- Cross Flow Area=0.03 m^{2}
- Shell Equivalent Diameter=0.0144m
- Shell Side heat transfer coefficient $=2813.36 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$
- Shell Side Pressure Drop=3.8 kPa

9 Cost Estimation

We have estimated the cost of formalin produced per ton, operating labour cost and general manufacturing expenses. Once a plant is designed, analysing its economics is a very crucial step[18]. The plant should be able to return all the capital invested and also generate profit after the breakeven point. Order-of-the-Magnitude Study Estimate is done. Thus method gives an error value of around $\pm 30 \%$.

Assumptions:

- Average Total working period of single operator is 49 weeks/year.
- 3 weeks of Holidays, Sick leave, Emergency Leave and Casual Leave are given.

9.1 Operating Cost labour

Generally an operator works 5 shifts in a week.
Therefore in a year $=49 \times 5=245$ shifts/year
The plant is operated all year (3 eight hour shifts 365 days). Therefore, Total shifts per year $=$ 1095 shifts/year.

Number of Operators required to fill 1095 shifts $=\frac{1095}{245}=4.5$ operators
Now, the number of non-particulate steps in the formaldehyde plant:
$N_{n p}=\sum$ (equipment)
$N_{n p}=1$ reactor +2 Towers +1 compressor +6 exchangers=10
Therefore, Number of operators per shift $N_{O L}$

$$
N_{O L}=6.29+3.17 P^{2}+0.23 N_{n p}
$$

Generally, P is zero, as it refers to the handling of particulate solids, but our plant is a nonparticulate one.

On solving, $N_{O L}=2.9308$
Therefore, Operating Labour $=$ Number of operators required to fill 1095 shifts $\times N_{O L}=4.5 \times$ $2.9308=13.188 \approx 14$ operators

Assuming, for single operator, wage is Rs. $797 / \mathrm{hr}$.
Hence yearly payment for single operator:

$$
797 R s . / h r \times 8 h r / \text { shift } \times 245 s h i f t s / \text { year }=R s .156229 / \text { year }
$$

Total Operating Labour Cost $=14 \times 156229=$ Rs.21871216/year
From the preliminary cost analysis, we found out that for Stainless Steel as a material of construction, our Fixed Capital Investment (FCI) will be Rs. 1012510200.

Raw Materials Cost $\left(C_{R M}\right)=$ Rs. $418587906 /$ year Waste Treatment $\operatorname{Cost}\left(C_{W T}\right)=$ Rs. 0 Utilities $\left(C_{U T}\right)=$ Rs 19324186 /year

9.2 Cost of Manufacturing

Cost of Manufacturing tells us about the unit cost price of the product formed. It helps us in setting the market price so that enough profit can be made and a return higher than the minimum acceptable return is achieved.

To calculate C $_{\text {OM }}$:

$$
C_{O M}=0.280 F C I+2.73 C_{O L}+1.23\left(C_{U T}+C_{W T}+C R M\right)
$$

Substituting these values, we get $C_{O M}=R s .881843152 .7 /$ year
Now, Cost of Manufacturing without depreciation;

$$
C_{O M, d}=0.18 F C I+2.72 C_{O L}+1.23\left(C_{U T}+C_{W T}+C R M\right)
$$

Substituting the values, we get $C_{O M, d}=R s .780592185 /$ year
Capacity of our plant is 60000 TPA.
Therefore, $C_{O M, d}=\frac{R s .780592185 / \text { year }}{60000 T P A}=$ Rs. $13009 /$ Ton
Therefore, Manufacturing Price of per kg Formalin= Rs. 13
If Formalin is sold at a price higher than this, it will yield profit.

9.3 Direct Manufacturing Cost

All the precentages are taken and reviewed from the literature. All these percentages give a general idea about the kind of costs a company would be bearing.

- Operating Labour Cost $\left(C_{O L}\right)=$ Rs. $21871216 /$ year
- Direct Supervisory Labour $=0.18\left(C_{O L}\right)=$ Rs.3936833/year
- Maintenance and Repairs $=0.06 F C I=$ Rs. $60750612 /$ year
- Operating Supplies $=0.009 F C I=$ Rs. 9112591.8/year
- Laboratory Charges $=0.15 C_{O L}=$ Rs. $3280682 /$ year
- Patents and Royalties $=0.03 C_{O M}=$ Rs. $26455284 /$ year

Total Direct Manufacturing Cost : Rs. 563319315/year

9.4 Fixed Manufacturing Cost

- Depreciation $=0.1 F C I=$ Rs. $101251020 /$ year
- Local Taxes and Insurance $=0.032 F C I=$ Rs. $32400326 /$ year
- Plant Overhead Cost $=0.708 C_{O L}+0.036 F C I=$ Rs. $51935188 /$ year

Total Fixed Manufacturing Cost: Rs. 185586535 /year

9.5 General Manufacturing Expenses

These expenses gives us a rough idea about the cash outflow occuring in the plan once the plant becomes operational. These expenses should be looked after by the revenue generated.

- Administration Costs $=0.177 C_{O L}+0.009 F C I=$ Rs. 12983797 /year
- Distribution and Selling Costs $=0.11 C_{O M}=$ Rs. $97002746 /$ year
- Research and Development $=0.05 C_{O M}=$ Rs. $44092157 /$ year

Total General Manufacturing Expenses: Rs. 154078701 /year

10 Conclusion

The preliminary work (Mass Balances \& Energy Balances) were done around the columns and other equipment. We got the composition of all the streams and the flow rates per hour for the production of 37% Formaldehyde and also computed the heat duties and power required for the columns and equipment installed. Designing of Distillation column and other equipment design(Reboiler, Condenser, Heat Exchanger) was carried out. The cost estimation using Order of the Magnitude Approach was carried out. The cost of manufacturing one ton of Formalin was found out.

References

[1] Ddbst.com,. 'Dortmund Data Bank - DDBST Gmbh'. N.p., 2015. Web. 17 Oct. 2014.
[2] Dryden, Charles E, M. Gopala Rao, and Marshall Sittig. Outlines Of Chemical Technology New Delhi: Affiliated East-West P., 1973. Print.
[3] Dutta, Binay K. Principles Of Mass Transfer And Separation Processes New Delhi: PrenticeHall of India, 2007. Print.
[4] Engineeringtoolbox.com,. 'Engineering Toolbox'. N.p., 2015. Web. 4 Feb. 2015.
[5] In.mathworks.com,. 'MATLAB GUI - MATLAB'. N.p., 2015. Web. 7 Feb. 2014.
[6] Kister, Henry Z. Distillation Design New York: McGraw-Hill, 1992. Print.
[7] Lamport, Leslie. LATEX. Reading, Mass: Addison-Wesley Pub. Co., 1994. Print.
[8] McCabe, Warren L, Julian C Smith, and Peter Harriott. Unit Operations Of Chemical Engineering. Boston: McGraw-Hill, 2005. Print.
[9] Nptel.ac.in,. 'NPTEL :: Chemical Engineering - Mass Transfer Operations I'. N.p., 2015. Web. 8 Mar. 2014.
[10] Osha.gov,. 'Formaldehyde. - 1910.1048'. N.p., 2015. Web. 10 Oct. 2014.
[11] Perry, Robert H, Don W Green, and James O Maloney. Perry's Chemical Engineers' Handbook New York: McGraw-Hill, 1997. Print.
[12] Nag, P. K. Heat And Mass Transfer New Delhi: Tata McGraw-Hill, 2011. Print.
[13] Smith, J. M, and H. C Van Ness. Introduction To Chemical Engineering Thermodynamics New York: McGraw-Hill, 2012. Print.
[14] Speight, James G. Chemical And Process Design Handbook New York: McGraw-Hill, 2002. Print.
[15] Support.office.com,. 'A Beginner's Guide To Visio'. N.p., 2015. Web. 3 Oct. 2014.
[16] Thakore, Shuchen B, and B. I Bhatt. Introduction To Process Engineering And Design New Delhi: Tata McGraw-Hill Pub. Co. Ltd., 2007. Print.
[17] Vle-calc.com,. 'VLE-Calc - Vapor-Liquid Equilibrium Database And Distillation Calculator OnLine'. N.p., 2015. Web. 3 Feb. 2015.
[18] Peters, Max S. and Timmerhaus, Klaus D. Plant Design and Economics for Chemical Engineers New York: McGraw-Hill, 4 ed. Print.
[19] Wikipedia,. 'Methanol'. N.p., 2015. Web. 13 Oct. 2014.

[^0]: Anjali Kumari (R900211004)
 Sonal Bhadauriya (R900211028)
 Prakhar Pathak (R900211053)

