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The present work predicts the performance parameters, namely brake specific fuel consumption (BSFC), brake thermal
efficiency (BTE), peak pressure, exhaust gas temperature and exhaust emissions of a single cylinder four-stroke diesel
engine at different injection timings and engine load using blended mixture of polanga biodiesel by artificial neural network
(ANN). The properties of biodiesel produced from polanga were measured based on ASTM standards. Using some of
the experimental data for training, an ANN model was developed based on standard back-propagation algorithm for the
engine. Multi-layer perception network was used for non-linear mapping between input and output parameters. Different
activation functions and several rules were used to assess the percentage error between the desired and the predicted values.
It was observed that the developed ANN model can predict the engine performance and exhaust emissions quite well with
correlation coefficient (R) 0.99946, 0.99968, 0.99988, 0.99967, 0.99899, 0.99941 and 0.99991 for the BSFC, BTE, peak
pressure, exhaust gas temperature, NOx, smoke and unburned hydrocarbon emissions, respectively. The experimental results
revealed that the blended fuel provides better engine performance and improved emission characteristics.
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1. Introduction
Rapidly increasing energy demand of the world due to
modernisation and industrialisation has led to a large num-
ber of developing countries importing crude oil other than
indigenous production to cope up their increasing energy
demand. Thus, a major chunk of their export earnings is
spent on purchase of petroleum products. Besides the fuel
crisis, the other problem of concern is the degradation
of environment due to fossil fuel combustion. Thus it is
essential that low emission alternate fuels must be devel-
oped for use in diesel engines. Biodiesel has been widely
recognised in the alternative fuel industry (Ghobadian et al.
2009). The attractive features of biodiesel fuel are (i) it is
plant-derived, and as such its combustion does not increase
current net atmospheric levels of greenhouse gas; (ii) it can
be domestically produced, offering the possibility of reduc-
ing petroleum imports; (iii) it is biodegradable and (iv)
relative to conventional diesel fuel, its combustion prod-
ucts have reduced levels of particulates, carbon monoxide
and, in some conditions, nitrogen oxides. The research and
development activities on biodiesel have been mostly on
sunflowers, saffola, soyabean, rapeseed and peanut which
are considered edible in several countries (Sahoo et al.
2007; Baiju, Naik, and Das 2009). However, biodiesel can
also be produced from non-edible oil seeds like jatropha,
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karanja, neem, cotton, rubber, polanga, etc. (Ramadhas,
Jayaraj, and Muraleedharan 2005). Sahoo et al. (2007)
conducted engine tests using polanga-based biodiesel and
recommended its use as an alternative fuel for the existing
conventional diesel engines without any major hardware
modifications. The density and viscosity of the polanga
oil methyl ester formed after triple stage transesterifica-
tion were found to be close to those of petroleum diesel
oil. Sahoo et al. (2009) evaluated comparative performance
and emission characteristics of jatropha-, karanja- and
polanga-based biodiesel as fuel in a tractor engine. They
observed that brake specific fuel consumption (BSFC) for
all the biodiesel blends with diesel increased with blends
and decreased with speed. The study however lacks the
effect of advancing or retarding the injection timing on
engine performance. Injection timing along with blend per-
centage is also an important parameter that may affect
the performance and emission characteristics (Shivakumar,
Srinivasa Pai, and Shrinivasa Rao 2011).

The performance of a CI engine for various proportions
of blends, for various compression ratios and at differ-
ent injection timings and pressures are usually desired by
engine manufacturers and engineers. This can be obtained
either by conducting comprehensive tests or by modelling
the engine operation. Testing the engine under all possible
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operating conditions and fuel cases are both time con-
suming and expensive. On the other hand developing an
accurate model for the operation of a CI engine fuelled
with blends of biodiesel is too difficult due to the com-
plex nature of the processes involved. So, as an alternative,
engine performance and exhaust emissions can be mod-
elled using artificial neural networks (ANNs). ANN can be
used to solve a wide variety of problems in science and
engineering, particularly in some areas where the conven-
tional modelling methods fail. The predictive ability of an
ANN results from the training on experimental data and
then validation by independent data. An ANN model can
accommodate multiple input variables to predict multiple
output variables. The prediction by a well-trained ANN
is normally much faster than the conventional simulation
programmes or mathematical models as no lengthy itera-
tive calculations are needed to solve differential equations
using numerical methods but the selection of an appro-
priate neural network topology is important in terms of
model accuracy and model simplicity. In addition, it is pos-
sible to add or remove input and output variables in the
ANN if it is needed. Canakci and Gerpen (2003) investi-
gated the engine performance and emissions characteristics
of two different petroleum diesel-fuels (No. 1 and No. 2),
biodiesels (from soybean oil and yellow grease) using
ANNs where 20% blends with No. 2 diesel fuel were
used as experimental results. In this study, the average
molecular weight, net heat of combustion, specific grav-
ity, kinematic viscosity, C/H ratio and cetane number of
each fuel were used as the input layer, while outputs were
the BSFC, exhaust temperature and exhaust emissions. The
back-propagation learning algorithm with three different
variants, single layer and logistic sigmoid transfer func-
tion were used in the network. The network yielded R2

values of 0.99 for both training and test data. The mean
% errors were smaller than 4.2 and 5.5 for the training and
test data, respectively. Ghobadian et al. (2009) developed
an ANN model of a diesel engine using waste cooking
biodiesel fuel with standard back-propagation algorithm.
The developed model predicted the engine performance
and exhaust emissions quite well with correlation coeffi-
cient (R) 0.9487, 0.999, 0.929 and 0.999 for the engine
torque, specific fuel consumption (SFC), carbon monox-
ide (CO) and hydrocarbon (HC) emissions, respectively.
The predicted mean square error (MSE) was between the
desired outputs as measured values and the simulated val-
ues were obtained as 0.0004 by the model. Canakci et al.
(2009) used ANN to model performance parameters and
emissions of a biodiesel engine using waste cooking oil.
Engine speed and percentage of blend were taken as the
input variables and brake power, torque, SFC and exhaust
emissions as the outputs. It was observed that the regres-
sion values for most of the parameters were close to unity.
Yusaf et al. (2010) conducted experiments in a diesel
engine fuelled with a combination of both compressed
natural gas and diesel fuel. ANN modelling was used to

predict brake power, torque, BSFC and engine emissions.
A good correlation between predicted and the experimental
values was observed. Ismail et al. (2012) reported an ANN
model programmed for a light-duty diesel engine. Engine
operating parameters, namely engine speed, output torque,
fuel mass flow rate and biodiesel fuel types and blends
were used as the input parameters in the model. The results
indicated that back-propagation feed-forward neural net-
work, combination of tansig/purelin transfer functions,
trainlm training algorithm were the optimum configuration
to predict the correlations. Çay et al. (2013) used ANN
modelling to predict the BSFC, effective power and aver-
age effective pressure and exhaust gas temperature of the
methanol engine. It was found that the R2 values were close
to 1 for both training and testing data. Root mean square
(RMS) values were smaller than 0.015 and mean errors
were smaller than 3.8% for the testing data. Ahmadi et al.
(2013a) proposed a model based on a feed-forward ANN
optimised by hybrid genetic algorithm particle swarm opti-
misation (HGAPSO) to estimate the power of the solar
stirling heat engine. Particle swarm optimisation (PSO)
was used to decide the initial weights of the neural net-
work. The results demonstrated the effectiveness of the
HGAPSO-ANN model. Ahmadi et al. (2013b) investi-
gated the optimal power of an endoreversible Stirling cycle
with perfect regeneration. Optimal temperature of the heat
source leading to a maximum power for the cycle was
detained. Moreover, effect of design parameters of the Stir-
ling engine on the maximised power of the engine and
its corresponding thermal efficiency was studied. Ahmadi
et al. (2013) investigated thermodynamic analysis and non-
dominated sorting genetic algorithm (NSGA)-II algorithm
were employed to optimise objective function associated
to the power output, thermal efficiency for a solar-driven
engine system. Three decision-making procedures were
applied to optimised answers from the results. The error
through investigation was shown using error analysis.
Ahmadi et al. (2013c) optimised output power and engine
thermal efficiency and total pressure losses were minimised
using NSGA algorithm and finite speed thermodynamic
analysis. The results were successfully verified against
experimental data. Ahmadi et al. (2014a) implemented
ANN to estimate the torque of the Stirling heat engine.
In addition, highly accurate actual values of the required
parameters which were gained from open literature sur-
veys from previous studies were implemented to develop
a robust intelligent model. Based on the outcomes of the
ANN approach, the output results of an ANN model were
close to relevant actual values with a high degree of per-
formance. Ahmadi et al. (2014b) employed multi-objective
evolutionary algorithms based on the NSGA-II algorithm,
while effectiveness of the regenerator, effectiveness of
low- and high-temperature heat exchangers, effectiveness
of high-temperature heat exchanger, temperatures of the
hot side and cold side, and dead volume ratio were con-
sidered as decision variables. After the definition of the
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Pareto optimal frontier, the final optimal solution was
selected using different decision-making methods such as
the fuzzy Bellman–Zadeh, linear programming technique
for multidimensional analysis of preference (LINMAP)
and technique for order of preference by similarity to
ideal solution (TOPSIS). Toghyani, Kasaeian, and Ahmadi
(2014), optimised the efficiency and the power loss due to
pressure drop into the heat exchangers for a Stirling system
using non-ideal adiabatic analysis and the second-version
nondominated sorting genetic algorithm. The optimised
answers were chosen from the results using three decision-
making methods. The applied methods were compared at
last and the best results were obtained for the technique for
order preference by similarity to ideal solution decision-
making method. Toghyani et al. (2015) applied ANN to
estimate the power and torque values obtained from a Stir-
ling heat engine. It employed the Levenberg–Marquardt
algorithm for training ANN with back-propagation net-
work for estimating the power and torque of the Stirling
heat engine. Considering the results obtained from this
study, there was very good agreement between the out-
put of the testing phase of the ANN-PSO model with
experimental data. In the present work, experimental inves-
tigations of the performance and emissions of the diesel
engine were conducted for different proportions of blends
of polanga with diesel at different injection timings and for
different loads. Using data from experimental results, ANN
models have been developed for the performance parame-
ters and emissions characteristics. In the model, blends of
polanga with diesel, different injection timings and loads
are taken as input parameters and BSFC, brake thermal
efficiency (BTE), peak pressure, exhaust gas temperature,
NOx, smoke and HC emissions are taken as output param-
eters. The application of ANN for modelling for both the
performance parameters and emission characteristics is an
effort to comprehensively understand the modelling capa-
bility of ANN, which will really help in better prediction
with the available experimental data.

2. Experimental investigation
The engine used in the present study was a Kirloskar make
single cylinder four-stroke water cooled CI engine. The
detailed specification of the engine is shown in Table 1.
The schematic diagram of the experimental set-up is shown
in Figure 1. The experimental set-up consists of engine,
dynamometer, load cell, temperature sensors, etc. Eddy
current-dynamometer was used for engine loading. A fuel
consumption meter, differential pressure (DP) transmit-
ter, range 0–500 mm wc, was used for measuring the
SFCs of the engine. A Kistler make quartz (piezo-electric)
transducer in conjunction with a Kistler charge ampli-
fier was employed to determine the cylinder gas pressure.
The pressure transducer had range up to 345 bar. Real-
time data acquisition was done with the help of Engine
Test Express V5.76 which was Labview-based software

Table 1. Engine specifications.

Item description Kirloskar

Brake horse power (BHP) 5HP
Speed 1500
Number of cylinders 1
Compression ration 16.7:1
Bore 80 mm
Stroke 110 mm
Orifice diameter 20 mm
Type of ignition Compression ignition
Method of loading Eddy current dyanometer
Method of starting Manual cranking
Method of cooling Water

package. Exhaust gas analyzer of AVL make (AVL DiGas
444) was used for measuring the emissions of HC, and NOx
from the engine. A smoke meter, model 437C, made by
AVL Gurgaon, was used for measuring the smoke emis-
sion from engine. Exhaust gas emissions recorded were
unburned hydrocarbons (UBHC) in parts per million (ppm)
and oxides of nitrogen (NOx) in ppm by using gas analyzer.
Opacity of the smoke in the exhaust was measured in % by
using smoke meter. K-type thermocouples were employed
to assess the exhaust gas, cooling water inlet and outlet
temperatures.

The performance test of the engine included fuel con-
sumption and rating test. In order to carry out fuel con-
sumption test, initially the engine was started and warmed
up on zero loads. After that the engine was gradually
loaded up to 100% load to stabilise its operation. The
fuel consumption test of the engine on different fuels was
then carried out at the selected loads. The experiment with
each selected fuel type was replicated three times and
the average value of different performance and emission
parameters measured was taken for analysis. In the present
investigation, biodiesel derived from polanga oil was used
as the test fuel. Biodiesel preparation through transester-
ification process has already been reported in previous
studies (Sahoo et al. 2007, 2009). Four biodiesel blends
of polanga were used, namely BD10, BD20, BD30 and
BD40. The physical and chemical properties of biodiesel
were determined as per ASTM standard test methods. The
injection timing of the engine was kept at 23° before top
dead center (bTDC) (as set by the manufacturer) initially
and the fuel was altered to biodiesel. By keeping injec-
tion timing at 23° bTDC, the load was differed from 20%
to 100% in the interval of 20%. The observations were
taken at brake power of 0.7, 1.5, 2.2, 2.9 and 3.7 kW. The
performance, emissions and combustion characteristics of
diesel engine were recorded for BD20 with a constant
speed of 1500 rpm. Similar procedures were repeated for
other biodiesel blends at the same injection timings. To
visualise the effect of injection timing, the entire procedure
was repeated for injection timings of 15°, 19°, 27° and 31°
bTDC.
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Figure 1. Experimental set-up.

3. Neural network design
3.1. Artificial neural networks
ANNs are logic programming technique developed by
imitating the operation of the human brain to perform
functions such as learning, remembering, deciding and
inference, without receiving any aid. ANNs have various
important features, such as learning from data, generali-
sation, working with an infinite number of variables, etc.
Artificial neural cells are the smallest units that form the
basis of the operation of ANNs just like a biological neuron
which receives inputs from other sources, combines them
in some way, performs generally a non-linear operation
on the result, and then outputs the final result. The artifi-
cial neural cells consist of mainly five elements, namely
inputs, weights, summation functions, activation functions
and outputs (Figure 2).

ANN has three main layers, namely the input, hidden
and output layers. The inputs are data from the external
source. The processing elements, called neurons, in the
input layer transfers data from the external source to the
hidden layer. The weights are the values of connections
between cells. The outputs are produced using data from

Figure 2. Structure of an artificial neural cell.

neurons in the input and hidden layers, and the bias, sum-
mation and activation functions. In the output layer, the
output of network is produced by processing data from
hidden layer and sent to external source. The summation
function is a function which calculates the net input of the
cell. The summation function used in this study is given in
Equation (1)

NTi =
n∑

j =1

wij xj + wbi. (1)

The activation function provides a curvilinear relation
between the input and output layers. It also determines the
output of the cell by processing the net input to the cell. The
selection of an appropriate activation function significantly
affects network performance. Commonly used activation

Figure 3. Best ANN architecture built for the prediction of
UBHC.
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Table 2. Correlation coefficients for outputs using different learning algorithms.

Correlation coefficient (R)

Parameter Learning algorithm Activation function Neurons Training Testing

BTE Trainlm Sig/lin 5 0.99406 0.99004
Trainlm Sig/lin 6 0.99591 0.99081
Trainlm Sig/lin 10 0.99647 0.99221
Trainlm Sig/lin 15 0.99604 0.99694
Trainlm Sig/lin 20 0.99968 0.99651
Trainlm Tan/lin 10 0.9943 0.99067
Trainscg Sig/lin 5 0.9834 0.98096
Trainscg Sig/lin 6 0.98099 0.98137
Trainscg Sig/lin 10 0.98921 0.9853
Traingdm Sig/lin 10 0.8377 0.855

BSFC Trainlm Sig/lin 5 0.99358 0.99471
Trainlm Sig/lin 6 0.99709 0.98604
Trainlm Sig/lin 10 0.99727 0.99168
Trainlm Sig/lin 15 0.99881 0.99618
Trainlm Sig/lin 20 0.99946 0.99359
Trainscg Sig/lin 5 0.97973 0.98542
Trainscg Sig/lin 6 0.98729 0.9905
Trainscg Sig/lin 10 0.99007 0.97519
Traingdm Sig/lin 10 0.75024 0.81653

Tex Trainlm Sig/lin 5 0.99819 0.99646
Trainlm Sig/lin 6 0.99898 0.99618
Trainlm Sig/lin 10 0.99931 0.99849
Trainlm Sig/lin 15 0.99967 0.99919
Trainscg Sig/lin 5 0.99397 0.99597
Trainscg Sig/lin 6 0.99321 0.99427
Trainscg Sig/lin 10 0.98791 0.99083

Pmax Trainlm Sig/lin 5 0.99424 0.99404
Trainlm Sig/lin 6 0.9947 0.99633
Trainlm Sig/lin 10 0.99264 0.99384
Trainlm Sig/lin 20 0.99988 0.99587
Trainscg Sig/lin 5 0.97638 0.96727
Trainscg Sig/lin 6 0.98404 0.97345
Trainscg Sig/lin 10 0.97305 0.98589

NOx Trainlm Sig/lin 5 0.99403 0.9852
Trainlm Sig/lin 6 0.99747 0.99329
Trainlm Sig/lin 10 0.99838 0.99327
Trainlm Sig/lin 15 0.99899 0.99659
Trainlm Sig/lin 20 0.99987 0.99873
Trainlm Tan/lin 10 0.9983 0.99396
Trainscg Sig/lin 5 0.98684 0.99406
Trainscg Sig/lin 6 0.98158 0.97792
Trainscg Sig/lin 10 0.98309 0.99188
Traingdm Sig/lin 10 0.93193 0.89309

Smoke Trainlm Sig/lin 5 0.98721 0.94474
Trainlm Sig/lin 6 0.98339 0.98946
Trainlm Sig/lin 10 0.99401 0.98814
Trainlm Sig/lin 15 0.99941 0.99628
Trainlm Sig/lin 20 0.99979 0.9956
Trainlm Sig/lin 25 0.99969 0.98134
Trainlm Tan/lin 10 0.99868 0.99375
Trainscg Sig/lin 5 0.95591 0.96122
Trainscg Sig/lin 6 0.96305 0.98925
Trainscg Sig/lin 10 0.98058 0.9458
Traingdm Sig/lin 10 0.92551 0.92046

UBHC Trainlm Sig/lin 5 0.97969 0.96352
Trainlm Sig/lin 10 0.99976 0.99905
Trainlm Sig/lin 11 0.99991 0.9998
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functions are the threshold function, step activation func-
tion, sigmoid function and hyperbolic tangent function.
The type of activation function depends on the type of neu-
ral network to be designed. A sigmoid function is widely
used for the transfer function. Logistic transfer function of
the ANN model in this study is given in Equation (2)

f (NTi) = 1
1 + e−NTi

. (2)

The significant advantages of ANNs are learning abil-
ity and the use of different learning algorithms. The most
important factor which determines its success in practice,
after the selection of ANN architecture, is the learning
algorithm. In order to obtain the output values closest to
the numerical values, the best learning algorithm and the
number of optimum neurons in the hidden layer must be
determined.

A most sought-after algorithm is the back-propagation
algorithm, which has different variants. Back-propagation
training algorithms such as conjugate gradient, quasi-
Newton and Levenberg–Marquardt (LM) use standard
numerical optimisation techniques. ANN with back-
propagation algorithm learns by changing the weights
which are stored as knowledge. The algorithm uses the
second-order derivatives of the cost function so that a bet-
ter convergence behaviour can be obtained. To get the
best prediction by the network, several architectures were
evaluated and trained using the experimental data. The
back-propagation algorithm was utilised in training of all
ANN models. In the training stage, to obtain the output
precisely, the number of neurons in the hidden layer was
increased step by step (i.e. 5–20). For this purpose, BFGS
(quasi-Newton back-propagation), LM learning algorithm
and scaled conjugate gradient (SCG learning algorithm)
learning algorithms were used in the building of the net-
work structure. As a result of conducted trials, the best
learning algorithms for most of the parameters was found
to be the LM learning algorithm. The best network struc-
tures for BTE, BSFC, Tex, Pmax, NOx, smoke and UBHC
were found to be 3-15-1, 3-15-1, 3-15-1, 3-20-1, 3-20-
1, 3-15-1 and 3-11-1, respectively (Table 2). The best
ANN architecture built for prediction of UBHC is shown
in Figure 3. Also, correlation coefficients of BTE, BSFC,
Tex, Pmax, NOx, smoke and UBHC for different learning
algorithms are given in Table 2.

In this study, 100 experimental data sets were prepared
for the training and testing data for the ANN. The ratio
for training and testing data was selected as 80%:20%, i.e.
20 and 80 sets of the experimental data were randomly
selected for the testing data and training data, respectively.
In the back-propagation model, the scaling of inputs and
outputs dramatically affects the performance of an ANN.
As mentioned above, the logistic sigmoid transfer func-
tion was used in this study. One of the characteristics of
this function was that only a value between 0 and 1 can
be produced. The input and output data sets were nor-
malised between 0.1 and 0.9 before the training and testing
process to obtain the optimal predictions. Linear function
suited best for the output layer. This arrangement of func-
tions in function approximation problems or modelling is
common and yields better results. However many other
networks with several functions and topologies were exam-
ined. Three criteria were used to evaluate the networks and
find the optimum one among them. The training and test-
ing performance (MSE) were chosen to be 0.00001 for all
ANNs. The smaller ANNs had the priority to be selected
as the complexity and size of the network was also impor-
tant. Finally, a regression analysis between the network
response and the corresponding targets was performed to
investigate the network response in more detail. Different
training algorithms were also tested and finally Levenberg–
Marquardt (Trainlm) was selected. Neural network toolbox
was used for ANN design.

4. Results and discussion
4.1. Biodiesel fuel characteristics and properties
Biodiesel is produced by the three stage transesterification
process. The first stage removes the organic matters and
other impurities present in the unrefined filtered polanga
oil using reagent. The second stage reduces the acid value
of the oil about 4 mg KOH/g corresponding to a free fatty
acid (FFA) level of 2%. The product of the second stage
(pure triglycerides) is transesterified to mono-esters of fatty
acids (biodiesel) using alkali catalyst. It was observed that
the biodiesel produced from polanga oil by above three
stages, has the physico-chemical properties close to those
of diesel. Fuel properties are mentioned in Table 3.

Table 3. Properties of polanga biodiesel and its blends.

Fuel Calorific value (kJ/kg) Viscosity (cSt) Density (g/cc) Flash point (°C) Cloud point (°C) Pour point (°C)

Diesel 43,996.3 2.91 0.830 77 6.4 − 4
10%B 40,094.2 3.1 0.839 82 7.2 2.8
20%B 39,193.73 3.2 0.847 88 7.9 3.1
30%B 38,393.3 3.32 0.855 94 8.2 3
40%B 37,792.98 3.6 0.863 99 8.6 3.2
Biodiesel 36,992.56 6.8 0.941 152 14.1 4.7
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Figure 4. Variation of BTE with injection timings.

4.2. Performance parameters
4.2.1. Brake thermal efficiency
Figure 4 shows the variation of BTE with injection timings
at full load. As can be seen from Figure 4, BD20 shows
higher values of brake thermal efficiencies on all the injec-
tion timings. When the injection was advanced by 4° from
the normal injection timing (23° bTDC) there was reduc-
tion in the thermal efficiency by 1.33% for BD20. A further
advance in injection by 4° resulted in reduction in thermal
efficiency by 1.6%. This may be attributed to the increase
in the delay period with the increase in injection advance
angle. On the other hand for retarded injection timings the
thermal efficiency at full load for B20 reduced by 3.0%. At
retarded injection timings the delay period decreases which
reduces the power because larger amount of fuel burns dur-
ing expansion. Hence normal injection timing (23° bTDC)
can be considered to be the best injection timing.

4.2.2. Brake specific fuel consumption
Figure 5 shows the BSFC at full load at different injec-
tion timings for different blends which shows that BSFC
is minimum for all the blends at the best injection tim-
ing (23° bTDC) where as both for advanced as well as
retarded values the brake specific energy consumption
(BSEC) increases as is evident that thermal efficiency is
maximum at this injection timing.

4.2.3. Exhaust gas temperature
The variation of exhaust gas temperature (Tex) with the
injection timing at full load for biodiesel blends is shown
in Figure 6. The exhaust gas temperature is minimum for
advanced injection timing for diesel and polanga blends.
Advancing the injection timing caused earlier start of
combustion relative to top dead center (TDC) and hence
complete combustion will take place and thus reducing the
exhaust gas temperatures. Of all the blends, BD10 shows
lower values of exhaust gas temperature at all the injection
timings.

Figure 5. Variation of BSFC at different injection timings for
different blends.

Figure 6. Variation of exhaust gas temperature (Tex) with injec-
tion timing at full load.

4.3. Exhaust emissions
4.3.1. NOx emission
One of the most critical emissions from the CI engines is
NOx emission. The formation of NOx is highly dependent
on cylinder temperature, oxygen concentration and resi-
dence time for the reaction to take place. Figure 7 shows
the variation of NOx with injection timings at full load con-
dition. For the retarded injection timings NOx emissions
were found to be less whereas for advanced injection tim-
ings it increased. When the injection timing was advanced
by 4° crank angle, the operating temperature increased and
hence 5.4% increase in NOx emission for BD20 at full load
condition. An increase in blend percentage improves the
NOx emissions, BD40 shows lowest NOx emissions. A fur-
ther advance in injection by 4° results in sharp increase
in NOx emissions for all the blends. On the other hand
when it was retarded by 4° crank angle, cylinder pres-
sure and temperature decreased, since more fuel burns after
TDC and thus sharply reducing NOx emissions for all the
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Figure 7. Variation of NOx with injection timing for different
blends at full load.

Figure 8. Variation of smoke emission with injection timings.

blends. BD40 shows the lowest NOx emissions for advance
injection timings under present study.

4.3.2. Smoke emission
Smoke formation occurs at extreme air deficiency. Air
or oxygen deficiency is locally present inside the diesel
engine. It increases as the air–fuel ratio decreases. Experi-
mental results indicate that smoke emissions decrease with
blending of diesel. Figure 8 shows the variation of smoke
emission with injection timings for all the blends. It is
very clear from the graph that for advanced injection tim-
ings, the smoke emissions were reduced since cylinder
operating temperatures were higher at advanced injection
timing. Because of higher temperature and pressure there
is an improved reaction between fuel and oxygen, and
thus reduces the smoke. BD40 shows the lowest smoke
emissions for all the injection timings under present study.

Figure 9. Variation of UBHC at full load with the injection
timings.

4.3.3. UBHC emission
UBHC emission consists of fuel that is incompletely burnt.
Figure 9 depicts the variation of UBHC at full load with
the injection timings for all the blends. Advancing injec-
tion timing from 23° to 31° bTDC caused reduction of
UBHC at full load for all the blends. Advancing the injec-
tion caused earlier start of combustion relative to TDC and
hence higher cylinder temperatures and thus reduced the
HC emission. For retarded injection timings UBHC emis-
sions were higher for all blends. BD40 shows the lowest
UBHC emissions for all the injection timings under present
study.

4.4. Prediction of engine performance and exhaust
emissions using ANN

The use of an ANN model is considered as a practical
and reliable approach for non-linear problems. The input
parameters of the network are blends of polanga with
diesel, different injection timings and loads and BSFC,
BTE, peak pressure, exhaust gas temperature, NOx, smoke
and UBHC emissions are taken as output parameters. In
this study, a computer program has been developed in
MATLAB platform to predict BSFC, BTE, peak pressure,
exhaust gas temperature, NOx, smoke and UBHC emis-
sions of the engine. The optimum network structures and
statistical parameters of ANN models for different learn-
ing algorithms are given in Table 4. It was apparent from
Table 4, the prediction performances for both training and
testing sets of BSFC, BTE, peak pressure, exhaust gas tem-
perature, NOx, smoke and UBHC emissions showed that
all the approaches provided a quite satisfactory accuracy.
Their R values were more than 0.99. The best prediction
results were obtained by LM learning algorithm. The LM
learning algorithm had the highest speed compared with
the other learning algorithms and it reached to optimal
solutions with smaller number of neurons in hidden layer.
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Table 4. Percentage uncertainties of various instruments.

Instruments Measuring range Accuracy Percentage uncertainties

AVL DiGas 444 Gas Analyser
HC 0–20,000 ppm vol. < 200 ppm vol. ± 10 ppm vol. ± 0.3

> 200 ppm vol. ± 5%
Nitric oxide (NO) 0–5000 ppm vol. < 500 ppm vol. ± 50 ppm vol. ± 0.2

> 500 ppm vol. ± 10%

AVL-437C Smoke Meter
Smoke opacity 0–100% ± 1% ± 1
Exhaust gas temperature 0–1250°C ± 1°C ± 0.2
Burette for fuel measurement ± 1 cc ± 1
Pressure transducer 0–100 bar ± 0.01 bar ± 0.1

Figure 10. (a) Regression BTE. (b) Regression BSFC. (c) Regression Tex. (d) Regression Pmax.
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Comparisons of the ANN predictions and experimental
results for testing sets of output performance parameters
are demonstrated in Figure 10. The most striking point here
is that the prediction values are very close to the experi-
mental values. As shown in Figure 10, the predictive ability
of the network for BTE, BSFC, Tex, Pmax was found to
be satisfactory. This meant that the selection of three input
parameters as influencing factors for predictions of engine
performance and exhaust emissions provided satisfactory
results. The equations of the BTE, BSFC, peak pressure,
exhaust gas temperature, NOx, smoke and UBHC are given
in Equations (3)–(9). Also, BTE, peak pressure, exhaust
gas temperature, NOx, smoke and UBHC of the diesel igni-
tion engine which operated with polanga biodiesel can be
accurately calculated by these formulae:

BTE = 1

1 + e−
(∑15

i=1 w2iFi−0.476
) , (3)

Table 5. Weights between input layer and hidden layer for
BTE.

i w11 w12 w13 b1 w2

1 − 2.659 − 1.4909 − 7.2222 9.2345 0.49793
2 7.603 3.3924 3.2061 − 4.6459 0.028551
3 1.7752 − 4.0325 − 2.9636 − 3.8798 − 0.17304
4 4.0652 − 4.0882 5.8603 − 3.4281 − 0.00092
5 6.3097 − 5.2133 − 2.3589 − 0.22551 0.047213
6 − 2.0261 0.52794 7.3573 − 4.7258 0.23413
7 1.9165 − 3.034 6.4762 − 1.4443 − 0.10764
8 3.7496 − 5.3014 5.9126 − 0.14011 0.24064
9 0.30894 − 0.13224 − 3.1058 − 2.2361 − 1.7928
10 − 1.7622 2.3105 1.7489 − 0.59645 0.33033
11 2.414 − 6.8167 1.0799 3.0259 0.15199
12 − 2.2804 − 1.9052 1.2801 − 3.0997 − 0.48815
13 − 5.0604 − 8.1969 − 0.5418 − 2.8316 0.02358
14 5.6673 − 2.4137 1.4239 7.5397 0.51033
15 3.2938 − 5.2575 − 2.316 8.0044 − 0.20478

Table 6. Weights between input layer and hidden layer for
BSFC.

i w11 w12 w13 b1 w2

1 4.1567 − 6.8758 − 0.62715 − 7.1395 − 0.3121
2 1.2461 − 0.92391 − 5.4306 − 6.2341 1.0329
3 − 3.8544 6.3341 − 0.30276 4.6152 − 0.11413
4 5.6418 2.4093 − 3.6373 − 7.4139 0.34645
5 − 1.1218 2.2638 − 5.7582 0.7759 0.19071
6 − 6.6487 3.6904 2.0569 4.2054 − 0.29359
7 − 3.179 − 7.9002 2.4183 0.53576 1.1479
8 2.8404 9.1259 − 2.7269 − 0.79445 1.1398
9 3.4646 1.2228 5.9325 0.13589 − 0.29822
10 4.6514 0.28008 − 0.71129 4.2639 − 1.0184
11 − 4.3396 7.2366 0.047968 − 4.0393 − 0.07197
12 9.2905 0.1312 0.40156 5.0997 0.84609
13 1.8145 − 0.34113 4.8228 5.2503 − 1.9078
14 − 0.92007 2.4169 6.8491 − 5.5229 − 0.01306
15 4.3419 − 4.516 − 3.9008 6.4368 − 0.15564

BSFC = 1

1 + e−
(∑15

i=1 w2iFi+0.83931
) , (4)

Tex = 1

1 + e−
(∑15

i=1 w2iFi+0.83009
) , (5)

Pmax = 1

1 + e−
(∑20

i=1 w2iFi+0.22691
) , (6)

NOx = 1

1 + e−
(∑20

i=1 w2iFi−0.49899
) , (7)

Smoke = 1

1 + e−
(∑15

i=1 w2iFi+2.6321
) , (8)

UBHC = 1

1 + e−
(∑11

i=1 w2iFi+2.1668
) , (9)

Table 7. Weights between input layer and hidden layer for
Tex.

i w11 w12 w13 b1 w2

1 − 2.4652 2.9441 − 5.7215 7.755 − 0.07501
2 − 5.291 − 4.1384 − 3.1141 6.6835 − 0.0291
3 − 4.0147 4.7701 − 2.7705 6.7188 − 0.07233
4 − 0.43808 − 3.3905 3.1037 1.3722 0.11408
5 − 0.45786 − 4.5437 0.45357 − 3.082 − 0.88974
6 5.3434 2.4231 − 3.1573 − 3.4994 − 0.02789
7 − 6.6319 1.0581 − 0.81977 1.3066 − 0.1725
8 3.7876 0.074979 − 6.362 − 0.6758 0.027909
9 5.0575 0.77668 0.035999 6.1256 − 1.4504
10 − 0.16347 0.12419 0.80725 − 0.4811 3.7382
11 − 0.34898 − 4.2829 0.63556 − 3.1095 1.0272
12 6.5656 3.2973 0.68616 6.5682 − 0.90005
13 0.54274 3.7039 − 4.3735 − 5.6351 − 0.06222
14 − 5.6862 − 2.2568 − 0.57557 − 6.0582 − 1.5057
15 5.2497 − 0.65505 2.2286 5.8557 0.045858

Table 8. Weights between input layer and hidden layer for
Pmax.

i w11 w12 w13 b1 w2

1 4.0674 − 6.6622 0.18175 − 9.1823 − 0.32554
2 − 2.6438 − 2.1123 6.1137 9.176 0.4758
3 − 3.5482 5.1364 − 3.7255 5.8395 − 0.00046
4 − 6.6239 0.40345 − 1.4243 8.5176 − 1.4155
5 − 5.8759 0.15814 1.0257 5.6111 − 0.26705
6 − 5.8578 − 2.901 − 5.7218 4.4918 − 0.14191
7 0.60466 − 3.9956 7.2408 − 2.6066 − 0.02581
8 − 3.2013 − 0.0126 5.1425 4.8749 0.1594
9 2.6809 7.6185 − 1.7703 − 1.5264 0.13621
10 2.9662 3.2632 − 3.3619 0.59175 − 0.40322
11 − 6.7118 1.9955 3.3735 1.1372 0.28085
12 − 0.81885 5.2898 5.4888 − 1.5393 − 0.24697
13 − 2.4464 3.1157 6.1101 − 1.7371 0.28156
14 5.0377 − 4.0285 − 3.3209 3.544 − 0.17704
15 4.4995 − 0.6158 0.58014 2.2005 2.2618
16 9.0279 − 2.1865 2.1157 4.2704 − 0.76204
17 6.0027 − 5.6314 2.1046 5.1682 − 0.02192
18 − 6.4392 − 5.1445 0.89901 − 7.101 − 0.21539
19 − 3.0931 − 5.4929 4.0787 − 6.8654 0.244
20 − 7.1134 0.98197 3.6646 − 8.0818 0.063698
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Table 9. Weights between input layer and hidden layer for
NOx.

i w11 w12 w13 b1 w2

1 − 8.5846 3.0819 3.1 8.2957 0.34036
2 1.5359 0.4366 − 5.9625 − 9.8186 0.54089
3 5.2328 − 0.13306 3.4558 − 9.5163 2.7475
4 3.5419 1.773 − 0.7582 − 6.6261 − 0.25984
5 2.459 − 0.13216 2.2966 − 1.2251 0.93451
6 0.92505 6.452 − 4.2709 − 3.2514 0.013634
7 − 6.1117 3.6304 2.0316 5.2834 − 0.18329
8 − 7.6568 − 1.2626 4.6037 1.8765 0.010837
9 − 6.3861 − 0.13676 4.0037 1.5459 0.39948
10 4.4965 − 3.7435 − 1.0019 − 0.06305 − 0.03127
11 − 3.0729 − 8.4581 − 2.4424 − 0.54576 − 0.01594
12 7.0096 0.1021 − 3.4113 2.9206 − 0.59255
13 − 1.5187 5.1305 7.9937 − 6.0434 − 0.01484
14 3.956 6.1666 − 5.1734 1.1665 0.024616
15 − 4.7473 − 5.5429 7.0341 − 4.489 0.044879
16 − 7.1345 0.036933 0.96463 − 3.115 − 1.0023
17 − 3.5204 0.60142 5.7575 − 5.0108 0.17618
18 1.0973 − 7.5413 − 2.7132 4.1482 − 0.00391
19 − 1.6256 − 7.1912 − 2.4069 − 7.1614 − 0.00695
20 − 3.7432 − 0.85145 − 4.5293 − 7.8385 0.16236

Table 10. Weights between input layer and hidden layer for
smoke.

i w11 w12 w13 b1 w2

1 4.0332 − 3.3736 − 5.3406 − 7.7861 − 0.40949
2 0.33131 − 8.5302 4.2813 − 7.1103 − 1.3164
3 − 1.0012 6.4911 − 3.2286 5.195 − 1.5492
4 11.2787 6.5804 − 2.8954 − 5.7425 − 2.1493
5 − 9.1699 − 4.7727 2.858 4.3057 − 2.0181
6 − 0.32597 0.18856 3.045 1.3071 1.2355
7 − 2.3917 − 6.2141 0.2249 1.2614 − 0.60329
8 − 4.5266 3.6809 1.4919 0.47413 0.034515
9 − 7.6513 − 3.5334 1.132 0.32912 0.32639
10 7.1878 3.8044 8.1063 1.9758 0.10416
11 − 8.887 − 0.44626 1.7509 − 0.8346 − 0.21946
12 4.5346 − 4.8819 2.6279 1.744 0.17143
13 − 10.3285 1.1624 0.42189 − 8.1101 0.47927
14 − 2.4782 0.40522 − 6.5778 − 6.3087 − 0.261
15 3.8687 − 7.1257 0.76902 8.125 0.51603

where Fi (i = 1, 2, 3, . . . , n) can be calculated accord-
ing to Equation (2) in which Ei is the weighted sum of the
inputs, and is calculated using

Ei = (w11 × IT + w12 × BD + w13 × EL + b1)i. (10)

The data flow was completed with the weights between
the layers. The weight values appearing in Equations (3)–
(9) are given in Tables 5–11. Here, the effect of the
parameters that are at the input layer (injection timing, fuel
type and engine load) on the BTE, BSFC, Tex, Pmax, NOx,
smoke and UBHC can be observed.

Table 11. Weights between input layer and hidden layer for
UBHC.

i w11 w12 w13 b1 w2

1 − 0.49679 − 3.5834 4.3696 − 5.0948 − 0.04419
2 − 0.02276 0.10129 1.4006 − 1.6731 − 3.7294
3 − 7.3103 0.036252 − 0.15238 3.4026 − 0.19858
4 6.1033 0.39764 0.043679 − 5.3649 − 0.08389
5 0.021231 4.3231 3.667 − 1.4496 0.66826
6 0.071644 − 8.6226 − 2.8367 − 0.52163 0.55334
7 2.3081 3.399 − 2.0378 3.0818 − 0.0348
8 − 6.5057 − 0.06603 0.30466 − 2.1177 0.17723
9 0.038635 − 7.2043 8.2722 7.0195 − 1.9114
10 0.007006 9.3079 − 6.7053 − 7.7919 − 1.9301
11 − 4.5603 1.5372 2.6846 − 7.2887 0.012742

5. Conclusion
The different polanga blends in the present work can be
conveniently used in CI engines as blends with diesel with-
out any engine modifications. Twenty percentage of blend,
namely BD20, showed the highest BTE for all the injec-
tion timings. It was observed that higher BTE values were
obtained at 23° bTDC injection timing, whereas retarding
or advancing the injection timing diminished the BTE val-
ues. The minimum value of BSFC was obtained for BD20
at the best injection timing of 23° bTDC. BD10 showed
the lowest values of exhaust temperature at all the injec-
tion timings. An ANN was developed and trained with the
experimental data of the present work. The result showed
that the training algorithm of back-propagation was suf-
ficient enough in predicting BSFC, BTE, peak pressure,
exhaust gas temperature and exhaust gas components for
different injection timings and different fuel blends ratios.
It has also been observed that R values were very close to
one for BTE, BSFC, peak pressure, exhaust gas tempera-
ture, NOx, smoke and UBHC. Analysis of the experimental
data by the ANN revealed that there was good correla-
tion between the predicted data resulted from the ANN
and measured ones. The developed model thus reduces
the experimental efforts and hence can serve as an effec-
tive tool for predicting the performance of the engine and
emission characteristics under various operating conditions
with different biodiesel blends.
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