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EXECUTIVE SUMMARY 

 
Fluid Catalytic Cracking (FCC) is an important secondary process, converting 

low- priced heavy feedstocks like heavy oil from either the refinery crude unit or 

vacuum unit and heavy fractions from other conversion units (cooker gas oil and 

hydrocracker fractionator bottoms etc) into lighter, more valuable hydrocarbons such 

as liquefied petroleum gas (LPG) and gasoline and thus increases the profitability in 

the entire refinery. Coke is formed as a byproduct during the process along with dry 

gas, both of which are undesirable. The conversion and yield pattern strongly depend 

on the feedstock quality, operating conditions of the riser reactor-regenerator sections 

and the type of catalyst.  The FCC process is very complex due to complicated 

hydrodynamics, heat transfer and mass transfer effects and complex cracking kinetics. 

These complex interactions coupled with economic importance of the unit have 

prompted many researchers to put their efforts on the modelling of FCC processes. 

Transport phenomena based mathematical models are the most popular because of 

their analytical description of the process in detail. Modeling is an iterative process 

and, therefore, leads to deeper understanding of the physics involved in the FCC 

process. Parametric sensitivity study helps in designing better control of the process 

unit. Process optimization, which can be subsequently carried out, can lead to 

improved productivity by maximizing throughput and choosing optimal operating 

conditions. Optimizing online can help maximize long-term profits. Additionally, 

running a model simultaneously in parallel with the plant operation can help in 

monitoring the plant and its health. 

FCC feed being a mixture of hundreds of hydrocarbons, it is not possible to 

account for each component undergoing reactions individually. It is therefore, 

necessary to represent the reaction kinetic process in terms of a small number of 
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kinetic lumps which take part in the cracking reactions. In the often used 5-lump 

model, the feed is represented by a single lump of average carbon number and 

molecular weight. However the limitation of such models is that the kinetics is valid 

only for the particular vacuum gas oil (VGO) with which the model parameters were 

estimated and is generally not applicable to other feeds especially if the composition 

is significantly different. Hence, there is a need to develop a more realistic kinetic 

model based on detailed feed description which can be general and equally applicable 

to a wide range of gas oils.  

The main objectives of the present work were as follows: 

 Development of an Artificial Neural Network (ANN) model, which relates the 

simple feed properties such as specific gravity, CCR, total sulfur, nitrogen and 

ASTM distillation temperatures to the detailed composition of feed in terms of 

paraffins, naphthenes and aromatics.  

 Development of a new ten lump kinetic model for the riser reactor including 

estimation of kinetic parameters which when coupled with a regenerator model 

can simulate the behaviour of the FCC unit.  

 Combining the ANN model with the ten lump kinetic model along with a solution 

procedure into a simulation package for the prediction of FCC product yields from 

simple feed properties. This model should be feed composition invariant and be 

applicable to a variety of heavy gas oils. 

 Comparison of present development with conventional five lump model results. 

The proposed 10- lump kinetic model uses 6 lumps to describe the feed gas 

oil, namely; heavy paraffins, heavy naphthenes, heavy aromatics, light paraffins, light 

naphthenes and light aromatics. However, in day to day refinery operations, it is not 

possible to analyze every VGO stream in terms of these lumps for use in the FCC 
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model. It was, therefore, considered necessary to develop an artificial neural network 

(ANN) - based model which relates the easily measurable properties of VGO such as 

specific gravity, ASTM distillation temperatures, Conradson carbon residue (CCR), 

total sulfur and total nitrogen to the six kinetic lumps, which characterize the feed in 

terms of hydrocarbon types. However, laboratory distillation of various FCC feed 

samples showed that lighter fractions (221- 343 
0
C) were always less than one percent 

by weight. Therefore, feed is assumed to consist, only, of heavy fractions (343+ 
0
C) of 

paraffins, naphthenes and aromatics. The detailed compositions of several feed 

samples were measured in the laboratory by using high-resolution mass-spectrometric 

method in terms of heavy paraffins, heavy naphthenes and heavy aromatics only. 

These feed samples were also analyzed in terms of routinely measured properties such 

as specific gravity, ASTM distillation temperatures, CCR, total sulfur and total 

nitrogen by using the different ASTM test methods. 60% of all the laboratory data 

sets were used to train several different neural nets, 20% for testing and remaining 

20% were used for the model validation. Several feed forward back propagation 

networks with different number of neurons in hidden layers were studied using 

Levenberg Marquardt (LM) training algorithm. Two different ANN models (Model -1 

and Model -2) were finally chosen in the present study. Model -1 predicts three output 

parameters: weight percentages of paraffin, naphthene and aromatic content in the 

FCC feed, from a single ANN architecture having three neurons in the output layer. 

Model -2 predicts the paraffin, naphthene and aromatic content individually from 

three different ANN architectures each with a single output neuron followed by 

normalization. In ANN modeling there is always the big question about what should 

constitute the input parameters and there is no straight forward way to answer. One, 

therefore, tends to cautiously choose all possible inputs that are likely to influence the 



xi 

 

output. But this comes at a cost. Besides increasing computation load, particularly 

during training, it calls for larger data sets. Since all experimental data are prone to 

measurement errors, learning rates must be kept low resulting in further slowing down 

the training besides increasing model uncertainty and decreasing accuracy to 

convergence. It is therefore, desirable to use an optimal set of input parameters where 

the contribution of each input is more significant than the noise it adds. Initially all the 

13 measured properties were chosen as input, namely: specific gravity, ASTM 

distillation temperatures - IBP, 5% ,10 %,30 % ,50% ,70 % , 90 % , 95 % and FBP, 

Conradson carbon residue (CCR), total sulfur and total nitrogen. Subsequently 

sensitivity of each variable was examined. Based on the sensitivity study and intuitive 

reasoning, five of the 13 variables were dropped. IBP and FBP can be seldom 

determined with any amount of certainty while CCR, Sulfur and nitrogen content in 

VGO are unlikely to influence its PNA composition. Remaining 8 – variables were 

used as inputs. The results were presented for both 13 as well as 8 inputs for Model 1 

and model 2. Among all these different investigated models, the ANN model with 8 

inputs, namely specific gravity and distillation temperatures except IBP, FBP to 

predict paraffin, naphthene and aromatic contents individually shows best agreement 

with the experimental results within permissible error limits. 

A conventional 5- lump kinetic model with 9 reactions was coded in C 

programming language and validated with the data from literature. The model was 

then extended to include 10- kinetic lumps and the code again validated. This was 

achieved by numerically integrating the model equations over the entire length of the 

riser reactor. A regenerator model, available in the literature, was somewhat modified 

before coding and was coupled with both the 5- lump and 10- lump models.  
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A new ten lump kinetic scheme was adopted in the present study and a total of 

25 cracking reaction paths were identified after dropping eight reactions because of 

their very low rates. The kinetic parameters were determined for these 25- reactions, 

which are generally invariant to feed gas oil composition. The high volume of 

experimental data required for kinetic parameters estimation was not practical to 

generate from any operating plant. It was, therefore, decided to use a combination of 

experimental data obtained from a refinery and those generated from ASPEN FCC 

simulator. These data were regressed using an evolutionary optimization technique, 

genetic algorithm, to evaluate the rate constants. An objective function was 

constructed from the sum of squares of errors between the measured and model 

calculated values which was minimized subject to the model equations as constraints. 

Since genetic algorithm (GA) is a global optimization technique, it was assumed that 

the converged set represented the true kinetic parameters. The detailed composition 

required as input to the 10- lump kinetic model was obtained from the validated ANN 

model described above requiring only routinely field laboratory measured feed 

properties as input.   

A parametric sensitivity analysis of estimated kinetic constants was done by 

varying all the 25- frequency factors and 25- activation energies in steps of ± 10 %, ± 

20 % and ± 40 % from their mean position, one at a time, to see how sensitive are the 

gas- oil conversion and yields of gasoline, LPG, dry gas and coke to these parametric 

variations. While a gradual variation of the output is expected, unusually high 

sensitivity may reflect adversely on the validity of the kinetic parameters. 

Alternatively, such analysis also helps in designing appropriate control systems. The 

variation of gas oil conversion and product yields with respect to frequency factor (k0, 

i) and activation energies (Ei) were plotted only for the most sensitive reactions. All 
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changes were found to be gradual as expected. The 25- heat of reactions (∆Hi) were 

also varied in steps of ± 40 %, and ± 60 % from their mean position, one at a time, to 

study their sensitivity on gas- oil conversion and product yields, which showed very 

small change in gas- oil conversion and product yields.  

The data that were regressed to obtained kinetic parameters for the 10 - lump 

model were reused to calculate kinetic parameters for the 5- lump model to facilitate 

comparison between the two models. Several sets of test run data and one set of 

normal operating data were obtained from an operating FCC plant in a refinery for 

validation of the developed simulator. The different data sets were collected with 

different feed compositions but with the same catalyst. While one wishes to validate 

the model at several locations in the riser reactor but in absence of plant measured 

values, it was only possible to compare the product yields and the reactor outlet 

temperature which are the only available measured experimental values. While the 5- 

lump model predicted values deviated significantly, the 10- lump model predictions 

were found to be in good agreement with plant data for all the cases investigated. This 

established the validity of the work done in this study including the ANN model, the 

simulator based on 10- lump kinetics and the kinetic parameters determination. This 

also demonstrated that the present simulator is independent of the feed heavy gas oil 

composition. Finally a parametric sensitivity study was undertaken in respect of 

operating conditions. The feed preheat temperature and feed flow rate to the riser 

reactor and input air rate to the regenerator were the three independent input 

parameters which were found to influence the FCC operation most. 
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Pris   Riser pressure, atm 

Prgn   Regenerator pressure, atm 

PO2   Average mean oxygen partial pressure, atm 

Qair   Heat flow rate with air, kj/sec 

QC   Heat released by the carbon combustion, kj/sec 

Qent   Heat input to the dense bed from entrained catalyst returning from 

cyclone, kj/sec 

Tfeed   Gas oil feed temperature, K 

Trgn   Regenerator dense bed temperature/Regenerated catalyst temperature, K 

Tsc   Temperature of spent catalyst, K 

∆Tst   Stripper temperature drop (~10 
0
C) 

W   Catalyst inventory in the regenerator, kg 

Xpt   Relative catalytic CO combustion rate 

Xj   Mole fraction of jth component 



xxi 

 

Z   Axial height from the entrance of the riser or regenerator, m 

Zbed   Regenerator dilute bed height 

Zdil   Regenerator dilute phase height, m 

Zrgn   Regenerator height, m 

Qloss, rgn   Heat losses from the regenerator, kj/sec 

Qloss, ris  Heat losses from the riser base, kj/sec 

ri  Rate of the ith reaction (kmol/kg.cat.s) 

R   Universal gas constant 

ROT   Riser outlet temperature (K) 

T Riser temperature at any axial height, K 

Tair   Temperature of the air to the regenerator 

Tbase   Base temperature for heat balance calculations, K (866.6 K) 

Qrgc   Heat flow with regenerated catalyst, kj/sec 

Qsc   Heat flow rate with spent catalyst, kj/sec 

Qsg   Heat flow rate with gases from the regenerator dense bed, kj/sec 

QH   Heat released by the hydrogen combustion, kj/sec 

Greek Letters 

αij   Stoichiometric coefficient of jth species in ith reaction 

βc   CO/CO2 ratio at the surface in the regenerator 

βc0   Frequency factor in βc expression 

ε   Riser or regenerator void fraction 

ρc   Catalyst density, kg/m
3
 

ρden   Catalyst density in the regenerator dense bed, kg/m
3
 

ρden   Catalyst density in the dilute phase of the regenerator, kg/m
3
 

ρg   Molar gas density in the regenerator, kmol/m3 

ρv   Oil vapor density, kg/m
3
 

ϕ   Catalyst activity 

ϴ   Catalyst residence time, sec 

 


