Nam Enro No:	ne: Olment	Ø UP	ES
	UPES		
	End Semester Examination		
	May 2025 Course: Rational Drug Discovery Program: B. Tech Biotechnology Course Code: HSCR4001 SECTION A	Semester: VIII Time: 03 hrs. Max. Marks: 100	
	 Each Question will carry 1.5 Marks. Instruction: Complete the statement / Select the co 	mmoot ongsvon	(a)
S. No.	Give answers of all following MCQs	(20 X 1.5) = 30	CO
Q 1	Select the correct method from following approaches which is considered under the 'Ligand based drug design'?	1.5	CO1
	a) Molecular docking b) Pharmacophore modeling c) QSAR Modeling d) b and c both		
Q2	Find the following sets contains all aromatic residues? a) G, D, N, E b) I, V, L, M c) R, K, H d) F, Y, W	1.5	CO1
Q3	i i i i i i i i i i i i i i i i i i i	1.5	CO2
Q4	'Procheck' tool is used for a) Alignment b) Protein Validation c) Simulation d) None of these	1.5	CO1
	Two sequences are said to be homologous if: a) they have diverged from a common ancestor. b) their alignments share 30% identity or more. c) they belong to the same family. d) they have converged to share similar functional properties.	1.5	CO3
Q6	Find the correct process from the following methods which is commonly used for virtual screening? a) ADMET analyses b) QSAR modeling c) Pharmacophore modeling d) All of the above	1.5	CO1
,	CoMFA method is used for a) 4D-QSAR b) 3D-QSAR c) 5D-QSAR d) 6D-QSAR	1.5	CO4
	With homology modelling, if there are major errors in the template, the model will: a) be very good b) be just as good as the template c) be unable to be built using current modelling programs d) be completely wrong	1.5	CO2

Q9 Lipinski's rule of five is used for	1.5	CO3
a) Docking b) Similarity search		
c) Drug likeness d) Dynamics simulation		
Q10 Select the correct model used for gene prediction	1.5	CO2
algorithm?	110	
a) UPGMA b) Hidden Markov Model		
c) Maximum parsimony d) None of these		
Q11 Find the kind of interactions that are typically involved in	1.5	CO2
binding a drug to the binding site of a protein.		
a) van der Waals interactions		
b) ionic bonds		
c) hydrogen bonds d) a combination of all the above		
	1.5	CO2
Q12 Identify the correct descriptions that most accurately describe binding sites and binding regions?	1.5	CO2
a) A binding site is part of a binding region		
b) A binding region is part of a binding site		
c) A binding region is the same as a binding site		
d) a binding region is on a drug whereas a binding site is on a		
macromolecular target		
Q13 Define the meaning of ADME in pharmacokinetics?	1.5	CO4
a) Affinity, dosage, marketing, efficacy		
b) Absorption, distribution, metabolism, excretion		
c) Agonism, dependence, mobility, efficiency		
d) Antagonism, deficiency, mean, efflux		
Q14 Select one of the following statements best describes an	1.5	CO1
induced fit?		
a) the process by which a binding site alters shape such		
that it is ready to accept a drug		
b) the process by which a drug adopts the correct		
binding conformation before entering a binding site		
c) the process by which binding of a drug to a binding site		
alters the shape of the binding site		
d) The process by which a binding site alters the shape of the		
drug into the binding conformation before binding		002
Q15 Identify the correct process to be established before the	1.5	CO2
search for a lead compound takes place?		
a) the pharmacophore b) Structure-activity relationships		
c) a bioassay d) patents		
Q16 Select the term used for the automated in vitro testing of	1.5	CO4
large numbers of compounds using genetically modified		
cells?		
a) robotic testing b) high throughput screening		
c) multi-screening d) nanotechnology		~~
Q17 There are several sources and methods of discovering	1.5	CO2
new compounds. Which of the following is most likely to		
lead to the discovery of a complex structure quite unlike		
any other previously discovered?		
a) combinatorial chemistry b) database mining		
c) screening plant extracts d) me too drugs		

Q18	Select the term used for drugs that are similar in structure	1.5	CO3
	to a known drug, and which are used for the same		
	purpose?		
	a) 'copycat' drugs b) 'me-too' drugs		
	c) 'derivative' drugs d) 'analogue' drugs		
	Find out the term used for small molecules that bind to	1.5	CO2
_	different regions of a binding site?		
	a) epimers b) isomers		
	c) isotopes d) epitopes		
	a) epitopes		
Q20	The software which is not used for molecular docking?	1.5	CO3
	a) Auto Dock b) Gold		
	c) Glide d) Chem-draw		
	SECTION B		
Each	question will carry 5 marks.		
	e short / brief notes (any four)		
Q1	a) Define fragment-based drug design.	2+3	CO2
	b) Describe the advantages and disadvantages of fragment-	2 ⊤3	CO2
	based drug design.		
Q2	Briefly discuss the antisense technology for target	5	CO4
\\\ 2	validation.	3	CO4
Q3	a) Illustrate the differences between 2D and 3D QSAR for	1.1	CO2
Q3	lead optimization.	1+4	CO2
	b) Write down the process of 3D QSAR study.		
04	•		00.4
Q4	a) Define pharmacophore mapping.b) Discuss the significance and its limitations for drug	1+4	CO4
	, ,		
05	design.		
Q5	a) Clarify the importance of molecular docking for drug	1+4	CO1
	discovery.		
	b) Draw a flow chart to explain the method of docking		
	study.		
	SECTION C Each question contains 15 marks.		
	Write short / brief notes		
Q1	a) Explain homology modeling.	1+6+3+5	CO1
ν,	b) Draw a flow-chart to explain the process of homology	1+0+3+5	CO1
	modeling.		
	c) Discuss the need of loop refinement in homology		
	modeling?		
	d) Illustrate the advantages and disadvantages of homology		
	modeling.		
02			
Q2	a) What do you mean by rational drug design? b) Panitiding (Zentag) is a medicine that reduces indigestion	3+7+5	CO4
	b) Ranitidine (Zantac) is a medicine that reduces indigestion,		
	heartburn, and acid reflux. Describe the steps which were		
	utilized to discover this drug via rational drug design		
	approach?		
	c) Briefly discuss the types of rational drug design methods		
	used for developing new drug like molecules.		
1	SECTION D		

	Each question contains 10 marks Write short / brief notes		
Q1	 a) Explain the Hansch rule? b) Discuss the difference between Hansch analysis and Free Wilson analysis. c) Discuss the Hansch analysis which can be utilized to optimize the quinoline derivative which is mentioned below. Find out the best lead compound based on craig plot. (K1 = 0.152, K2 = 1.681, K3 = 4.053 and K4 = 7.212) R = Cl, Br R1 = -CH3, -C2H5, -Phenyl, -COOH, -NO2 	1+2+7	CO2
Q2	 a) Define DNA microarray. b) Explain the function of zinc finger proteins (ZFPs). c) Explain the reason for using shotgun sequencing method than sanger sequencing process during target identification. d) Illustrate 2D electrophoresis. 	2+2.5+3.5+2	CO3