N	am	^	
T.4	am	c	٠

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Analytical Techniques for Biosimilars Program: B.Tech - Biotechnology

Course Code: HSBT4013

Semester: VIIIth **Duration: 3 hours** Max. Marks: 100

Instructions: Carefully read and attempt all the questions.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
Q1.	NMR spectroscopy primarily detects nuclei that have:	1.5	CO1
	A. High molecular mass		
	B. A magnetic moment and non-zero spin		
	C. UV absorbance		
	D. Free electrons		
Q2.	List the critical quality attribute often monitored through peptide	1.5	CO2
	mapping in biologics.		
	A. pH of formulation buffer		
	B. Thermal stability		
	C. Oxidation, deamidation, and glycosylation sites		
	D. Hydrophobicity index		
Q3.	The shape of a molecule can be inferred from:	1.5	CO1
	A. Its extinction coefficient		
	B. Its sedimentation coefficient and diffusion coefficient		
	C. Its isoelectric point		
0.4	D. Its crystal lattice structure	1.5	COA
Q4.	Analytical ultracentrifugation (AUC) is primarily used to study:	1.5	CO2
	A. Protein crystallization		
	B. RNA sequencing		
	C. Size, shape, and interactions of macromolecules in solution		
05	D. Enzyme-substrate kinetics Define void volume in SEC.	1.5	CO3
Q5.	A. The volume of the mobile phase only	1.5	COS
	B. The total volume of the column		
	C. The volume at which the smallest molecules elute		
	D. The volume not accessible to any solute (elution of the largest		
	molecules)		
Q6.	A common application of SEC in protein biophysics is to:	1.5	CO2
Qu.	A. Determine enzyme activity		002
	B. Assess oligomeric state or aggregation		
	C. Identify phosphorylation sites		
	D. Map epitope binding		
Q7.	Identify the attributes typically measured in an ion mobility separation	1.5	CO1
	before MS analysis.		
	A. UV absorbance		

	B. Arrival time distribution (ATD)		
	C. Heat of desorption		
	D. Isotopic ratio		
Q8.	IM-MS is particularly useful in structural biology because it provides	1.5	CO1
Qu.	information about:	1.0	
	A. Protein solubility		
	B. Collisional cross-section (CCS) and conformational heterogeneity		
	C. Nucleotide sequences		
	D. Protein melting temperature		
Q9.	labeling strategy is commonly used in antibody arrays for	1.5	CO3
	detection.		
	A. Bioluminescence		
	B. Radiolabeling		
	C. Fluorescent or chemiluminescent tags		
	D. Gel electrophoresis		
Q10.	Identify the application that is not typical of antibody array mapping.	1.5	CO2
_	A. Cytokine profiling		
	B. Kinase activity measurement		
	C. Biomarker discovery		
	D. Protein expression profiling		
Q11.	In HDX-MS, which type of protein region typically shows slower	1.5	CO2
	deuterium uptake?		
	A. Disordered loop regions		
	B. Surface-exposed domains		
	C. Hydrogen-bonded, structured regions (e.g., α-helices, β-sheets)		
	D. Post-translationally modified residues		
Q12.	In HDX-MS, increased deuterium uptake typically indicates:	1.5	CO1
	A. Highly structured regions		
	B. Regions with slow exchange		
	C. Flexible or solvent-exposed regions		
	D. Protein denaturation artifacts		
Q13.	Differential Scanning Calorimetry (DSC) is primarily used to measure:	1.5	CO2
	A. Molecular weight of proteins		
	B. Optical activity of biomolecules		
	C. Heat changes associated with thermal transitions		
	D. Molecular vibrations		
Q14.	The area under the DSC thermogram peak corresponds to:	1.5	CO2
	A. Molecular weight		
	B. Heat capacity		
	C. Enthalpy change (\(\Delta H \)		
	D. Entropy change (ΔS)		
Q15.	Identify the region of the infrared spectrum is most useful for	1.5	CO2
	identifying functional groups.		
	A. Near-IR (14000–4000 cm ⁻¹)		
	B. Fingerprint region (4000–1500 cm ⁻¹)		
	C. Mid-IR (4000–400 cm ⁻¹)		
0.1.5	D. Far-IR (400–10 cm ⁻¹)		0.01
Q16.	structural change is typically observed in CD spectra upon	1.5	CO1
	protein denaturation.		
	A. Shift from α-helix to β-sheet signals		
	B. Increase in near-UV signal		

Q17. Q18. Q19.	D. Intensification of 222 nm peak Which of the following is not an advantage of CD spectroscopy? A. Requires small amounts of protein B. Non-destructive and fast C. Suitable for detecting protein folding D. Provides atomic-resolution structure	1.5	CO2
Q18.	A. Requires small amounts of protein B. Non-destructive and fast C. Suitable for detecting protein folding D. Provides atomic-resolution structure		
	B. Non-destructive and fast C. Suitable for detecting protein folding D. Provides atomic-resolution structure is the smallest repeating unit that, when replicated throughout space, forms the entire crystal lattice.	1.5	
	C. Suitable for detecting protein folding D. Provides atomic-resolution structure is the smallest repeating unit that, when replicated throughout space, forms the entire crystal lattice.	1.5	
	D. Provides atomic-resolution structure is the smallest repeating unit that, when replicated throughout space, forms the entire crystal lattice.	1.5	_
	is the smallest repeating unit that, when replicated throughout space, forms the entire crystal lattice.	1.5	
	throughout space, forms the entire crystal lattice.	1.0	CO1
Q19.			001
	Describe the primary reason for using cryo-cooling (e.g., liquid	1.5	CO2
	nitrogen) during X-ray data collection.		
	A. Increase signal intensity		
	B. Prevent water evaporation		
	C. Reduce radiation damage to the crystal		
	D. Enhance diffraction resolution		
Q20.	Primary sequence of the protein be determined by -	1.5	CO1
	A. Tandem MS/MS		
	B. MALDI-TOF MS		
	C. Edman Degradation		
	D. All the above		
	Section B		
	(4Qx5M=20 Marks)		
Q1.	Discuss miller indices. Draw miller indices for 110 and 101.	5	CO3
Q2.	Illustrate the workflow of hydrogen deuterium exchange technique.	5	CO1
Q3.	Describe pression motion in NMR and what is the effect of increasing the magnetic field on precession motion.	5	CO2
Q4.	Discuss and describe the role of HILIC in determining glycosylation's on antibody.	5	CO4
	Section C (2Qx15M=30 Marks)		
Q1.	Propose an experimental method based on mass spectrometry to compare the	15	CO2
2	conformational states of the purified antibody. (10 marks)		002
	Explain the technique used with the help of a diagram. (5 marks)		
Q2.	Draw a working model for X-ray diffraction. (5 marks)	15	CO4
2	Discuss and draw the workflow for determining a three-dimensional structure		
	using X-ray crystallography. (10 marks)		
	Section D		
01	(2Qx10M=20 Marks)	10	000
Q1.	Two purified antibodies were tested for thermal stability. Propose an	10	CO3
	experimental method for determining thermal stability along with its working		
02	principle.	10	004
Q2.	Describe MALDI-TOF. (7 marks) Outline the role of MALDI-TOF for finding the biosimilarity. (3 marks)	10	CO4