Name:	2 = C
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Program:B. PharmSemester:VICourse:Pharmaceutical BiotechnologyDuration:03 Hours

Course Code: BP605T Max. Marks: 75

Instructions: Attempt all sections.

SECTION A

(20Q×1M=20 Marks)
Attempt all questions. Each question carries one mark.

S. No. Marks COs The branch of biotechnology that focuses on medical applications like drug development Q1CO₁ 1 a) Red Biotechnology b) Green Biotechnology c) White Biotechnology d) Blue Biotechnology Choose the first biotech drug approved by the FDA. Q_2 1 CO1 b) Monoclonal Antibodies a) Erythropoietin d) Penicillin c) Humulin Who are the pioneers of recombinant DNA technology? 03 CO1 1 a) Watson and Crick b) Louis Pasteur c) Kary Mullis d) Boyer and Cohen Select the enzyme that is widely used in wound cleaning preparations. 04 1 CO₁ b) Peroxidase d) Catalase d) Protease a) Lipase Sticky ends in DNA fragments are characterized by their— Q 5 a) Straight cuts with no overhangs b) Ends that bind only RNA CO₂ 1 c) Staggered cuts d) Circular DNA structure An essential property for a cloning vector: a) Must have a selectable marker 06 1 CO₂ b) Should not replicate inside the host c) Must degrade after replication d) Should be RNA-based The source of the T4 DNA ligase enzyme is: Q 7 1 CO₂ c) Bacteriophage a) Human cells b) E. coli d) Yeast cells Golden rice is genetically modified due to: **Q8** a) Enhanced taste b) Production of beta-carotene 1 CO₂ c) Increased protein content d) Improved resistance to pests The immune cells most active in graft rejection are: 09 1 CO₃ a) T cells b) B cells c) Natural killer cells d) Mast cells The antibody found in mucosal surfaces that protects against infections is: Q 10 1 CO3 c) IgA a) IgE b) IgM d) IgG The vaccine component that directly triggers an immune response is: Q 11 1 CO₃ a) Preservative b) Adjuvant c) Antigen d) Stabilizer The function of the Fab region of an antibody is: a) Complement activation Q 12 b) Antigen binding 1 CO₃ c) Opsonization d) Cytokine release The starting point for plasmid transfer during conjugation is: Q 13 1 CO₄ a) Tra genes b) Pilus c) oriT d) Complementary strand Select the type of DNA packaging that is found in eukaryotic cells. a) Nucleosomes with histones b) Supercoiled circular DNA CO4 O 14 1 c) Naked linear DNA d) Plasmids and RNA The purpose of blocking in Western blotting is: Q 15 a) To separate proteins by size b) To transfer proteins to a membrane 1 CO4 c) To prevent non-specific binding of antibodies d) To visualize protein bands

What is a major application of conjugation?				
Q 16	a) Diagnosis of viral infections b) Transfer of antibiotic resistance genes	1	CO4	
	c) Identification of proteins d) Visualization of DNA fragments			
Select the phase in batch fermentation that involves rapid microbial growth under				
Q 17	optimal conditions.		~~-	
	a) Lag phase b) Exponential phase	1	CO5	
	c) Stationary phase d) Death phase			
	Choose the role of a sparger in a fermenter.			
Q 18	a) To mix nutrients b) To prevent vortex formation	1	CO5	
	c) To introduce air into the medium d) To monitor pH levels			
0.10	The primary carbon source in the medium for citric acid production is:	1	005	
Q 19	a) Ammonium salts b) Lactose c) Sucrose d) Corn steep liquor	1	CO5	
0.20	Most commonly used sterilization method for liquid media in industrial fermentation is:	1	COL	
Q 20	a) UV radiation b) Filtration c) Autoclaving d) Chemical sterilization	1	CO5	
SECTION B (20 Marks)				
(2Q×10M=20 Marks)				
Attempt 2 Question out of 3.				
Q 1	List different blotting techniques and explain the four types of ELISA briefly, with	10	CO4	
	appropriate diagrams. (2+8)	10 CO4		
Q 2	Elaborate on the production processes of penicillin through fermentation technology.	10	CO5	
0.3	Write short note on any two of the following: (5+5)			
	a) Mechanism of innate immunity with a supporting diagram.		CO3	
Q 3	b) Process of hybridoma technology.		CO3	
c) Immediate (Allergic) Hypersensitivity				
SECTION C (35 Marks)				
(7Q×5M=35 Marks)				
Attempt 7 Question out of 9.				
Q 1	Compare the genetic organization of eukaryotes and prokaryotes.	5	CO4	
Q 2	Define fermentation technology and outline the general requirements for a fermentation	5	CO5	
	process.			
Q 3	Differentiate between Class I and Class II MHC pathway.	5	CO3	
Q 4	Define genetic engineering and list its applications. (1+4)	5	CO1	
Q 5	Describe the process of physically immobilizing an enzyme on activated carbon, including	5	CO1	
	the advantages and limitations of this method. (3+2)		COI	
Q 6	Explain biosensors in terms of their components and the coupling techniques used for	5	CO1	
	bioelements.		COI	
Q 7	Explain the mechanism of action of restriction endonuclease.	5	CO2	
Q 8	Outline the steps involved in insulin production through rDNA technology with a	5	CO2	
	supporting diagram.			
Q 9	Differentiate between Type I, Type II, Type III and Type IV restriction endonuclease.	5	CO2	