	ama	
1.	ame	

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Antimicrobial resistance & drug development Semester : VI

Program: Int.BSc.MSc. Microbiology Duration : 3 hours Course Code: HSMB3025P Max. Marks: 100

Instructions:

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Write at least 3 characteristics of an ideal antimicrobial drug.	1.5	CO2
Q 2	Spot which of the following is considered a broad-spectrum antibiotic.	1.5	CO2
	a) Penicillin G		
	b) Vancomycin		
	c) Tetracycline		
	d) Rifampin		
Q 3	Define MLC.	1.5	CO2
Q 4	MLC > MIC. Comment if the statement 'True' or 'False'	1.5	CO1
Q 5	Write the full form of CADD.	1.5	CO1
Q 6	Define selective toxicity.	1.5	CO1
Q 7	Recollect, which of the following antibiotics is effective in treating oral Candidiasis:	1.5	CO2
	a) Nystatin		
	b) Bacitracin		
	c) Tetracycline		
	d) Griseofulvin		
Q 8	Recall, which of the following antibiotics is most likely to cause depression of the bone marrow:	1.5	CO2
	a) PencillinG		
	b) Tetracycline		
	c) Trimethoprim		
	d) Amphotericin B		
Q 9	Identify, which of the following interferes with the regeneration of	1.5	CO2
	the monophosphate form of Bactoprenol from the pyrophosphate		
	Form:		
	a) Vancomycin		
	b) Ampicillin		
	c) Bacitracin		
	d) Cephalosporins		

Q 10	Recall, which of the following is not an appropriate target for	1.5	CO1
V 10	antifungal drugs:	1.0	
	a. ergosterol b. chitin		
	c. peptidoglycan		
	d. $\beta(1\rightarrow 3)$ glucan		
011	Identify which of the following resistance mechanisms describes	1.5	CO2
Q11	the function of β -lactamase?	1.5	CO2
	·		
	b) Target mimicry c) Drug inactivation		
	d) Target overproduction		
Q12	Recall, which of the following techniques cannot be used to	1.5	CO2
Q12		1.3	CO2
	determine the minimum inhibitory concentration of an		
	antimicrobial drug against a particular microbe?		
	a) E-test		
	b) Microbroth dilution test		
	c) Kirby-Bauer disk diffusion test		
012	d) Macrobroth dilution test	1.5	CO2
Q13	Fill in the blank that the group of soil bacteria known for their ability	1.5	CO2
	to produce a wide variety of antimicrobials is called the		
Q14	Identify, which of the following is not a target for drug design?	1.5	CO2
	a) Enzymes		
	b) Receptors		
	c) Ribosomes		
	d) Vitamins		
Q15	Antiviral drugs, like Tamiflu and Relenza, that are effective against	1.5	CO1
ľ	the influenza virus by preventing viral escape from host cells are		
	called		
Q16	Write that in the Kirby-Bauer disk diffusion test, the of	1.5	CO1
	the zone of inhibition is measured and used for interpretation.		
	a) Diameter		
	b) Microbial population		
	c) Circumference		
	d) Depth		
Q17	Comment in one line, when is using a broad-spectrum antimicrobial	1.5	CO1
-	drug warranted?		
Q18	Identify the correct answer. Vancomycin resistance in enterococci	1.5	CO1
	is primarily due to:		
	a) Efflux pumps		
	b) Enzymatic degradation		
	c) Cell wall modification		
	d) Ribosome methylation		
O10		1 5	CO1
Q19	Spot the correct answer. Macrolides act on the:	1.5	CO1
	a) DNA		
	b) 50S ribosomal subunit		
	c) Cell membrane		
	d) RNA polymerase		

Q20	Recall, Bacterial resistance to macrolides often involves:	1.5	CO2
	a) Ribosomal methylation		
	b) Cell wall alteration		
	c) DNA mutation		
	d) Viral vectors		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Describe which bacterial structural target would make an	5	CO2
	antibacterial drug selective for gram-negative bacteria. Provide one		
	example of an antimicrobial compound that targets this structure.		
Q 2	Write a note on adverse drug reaction caused by various	5	CO1
	antimicrobials (antibacterials/antivirals and anti-amebic drugs). Cite		
	specific examples.		
Q 3	Write the major mechanism of resistance to Chloramphenicol.	5	CO2
Q 4	a. 'Chloramphenicol and Streptomycin are not in use.' Reason	5	CO1
	why (2)		
	b. Explain how they can be put to use given that drug resistance is		
	not an issue with them. (3)		
	Section C		
Q 1	You are part of a team tasked with designing a drug against multi-	15	CO2
Ų I		15	CO2
	drug resistant <i>Mycobacterium tuberculosis</i> .		
	a) Describe the key steps will you take in the rational drug design process? (6)		
	b) Explain how will you ensure the drug targets are specific to the		
	bacterium? (5)		
	c) Discuss the role of in silico tools and wet lab validation in this		
	process. (4)		
Q 2	An HIV-positive patient on antiretroviral therapy (ART) shows	15	CO2
	rising viral load. Resistance testing reveals mutations in the reverse		
	transcriptase gene.		
	a. Describe what could be the cause of this resistance? (1)		
	b. Outline how therapy should be adjusted in this case. (5)		
	c. Enlist and explain mode of action of major antiviral drugs. (7)		
	d. Write about the different types of reverse transcriptase		
	inhibitors. (2)		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Describe in detail the molecular mechanisms of resistance against	10	CO1
	macrolides and vancomycin.		
Q 2	Describe in detail the mode of action of anti-fungal drugs. (at least	10	CO1
	4)		