N	ama	
1.	ame	٠

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2025

Course: Enzymology Semester : VI
Program: Int BSc MSc Microbiology Duration : 3 Hours
Course Code: HSMB3020 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Cofactors are essential for enzyme activity because	1.5	CO1
	(A) inhibit enzyme activity		
	(B) provide structural support to enzyme		
	(C) Assist enzymes in catalyzing reaction		
	(D) All of the above		
Q 2	A sigmoidal curve of substrate concentration [S] Vs reaction	1.5	CO1
	velocity (V) may indicate		
	(A) Michaelis -Menten kinetics		
	(B) Co-operativity binding		
	(C) Competitive inhibition		
	(D) Non-competitive inhibition		
Q 3	Which of the following statements about abzymes is true?	1.5	CO1
	(A) They are artificial enzymes		
	(B) They have high specificity but no catalytic activity		
	(C) They are natural enzymes with altered function		
	(D) They only work with one substrate		
Q 4	What is the significance of the catalytic efficiency (kcat/Km)	1.5	CO1
	ratio?		
	(A) Measures enzyme specificity		
	(B) Determines enzyme inhibition		
	(C) Indicates Vmax		
	(D) Shows pH dependence		
Q 5	Which plot is used to linearize the Michaelis-Menten	1.5	CO1
	equation?		
	(A) Lineweaver-Burk plot		
	(B) Scatchard plot		
	(C) Eadie-Hofstee plot		
	(D) Hill plot		
Q 6	When the velocity of enzyme reaction equals to Vmax,	1.5	CO1
	substrate concentration [S] is		
	(A) Half of Km		
	(B) Equal to Km		

Q 19	Define turnover number (kcat).	1.5	CO2
	Concentration Concentration Concentration		
	Rate		
	А В С		
Q 18	Identify the order of reaction and label A, B and C	1.5	CO2
Q 17	Enlist name of enzyme and its microbial source used in poultry industry.	1.5	CO2
Q 16	Recall the formula of Arrhenius equation.	1.5	CO2
	(D) Depends on pH	. –	0.5.5
	(C) No effect		
	(B) Low affinity		
	(A) High affinity		
Q 15	What does a low Km value indicate about an enzyme affinity for its substrate?	1.5	CO2
0.15	(D) Allosteric		004
	(C) Irreversible		
	(B) Competitive		
	(A) Non-competitive		
Q 14	Which type of inhibition can be overcome by increasing substrate concentration?	1.5	CO2
014	reaction equilibrium (True/False)	1.7	CO2
Q 13	In enzyme substrate interactions, Enzyme led to change in	1.5	CO2
	(D) Reaction follows an irreversible path		
	(C) Substrates do not interact		
	(B) Either substrate can bind first		
	reaction? (A) One substrate must bind first		
Q 12	Which of the following represents a random bi-substrate	1.5	CO2
Q 11	Recall the formula for fold purification.	1.5	CO2
Q 10	Define the term specific activity.	1.5	CO1
	(C) Eadie-Hofstee plot, (D) Steady-state equation		
Q)	(A) Double reciprocal plot, (B) Hanes-Woolf plot	1.0	
Q 9	Lineweaver-Burk plot is also known as	1.5	CO1
Q 8	(D) Specific activity Recall the formula of Arrhenius equation.	1.5	CO1
	(C) Turnover number		
	(B) IU (International Unit)		
	(A) Katal		
Ų į	of product formed per minute?	1.3	
Q 7	(D) Far above the Km What is the unit of enzyme activity defined as one micromole	1.5	CO1
	(C) Twice the Km		

Q 20	The minimum amount of energy needed for a process to occur	1.5	CO2
	is called the ?		
	(A) Minimal energy theory		
	(B) Process energy		
	(C) Kinetic energy		
	(D) Activation energy		
Section	1 B (4Qx5M=20 Marks)		
Q 1	Discuss isozymes with suitable example.	3+2	CO1
Q 2	Derive Lineweaver-Burk equation and write its	3+2	CO1
	significance.		
Q 3	Compare and contrast the roles of hydrolases and ligases in	2.5+2.5	CO2
	biological systems, providing one specific example for each		
	enzyme class.		
	Or		
	Compare Metal activated enzymes with Metalloenzymes with		
	suitable examples.		
Q 4	Discuss cooperativity with help of Hill equation.	5	CO2
	Section C		- I
	(2Qx15M=30 Marks)		
Q 1	(A) A patient is admitted after accidental methanol		CO3
	ingestion. The attending physician decides to administer		
	ethanol as an antidote. Based on your understanding of	5+10	
	alcohol dehydrogenase activity, explain why ethanol is		
	used in this treatment."		
	(B) Differentiate between competitive, non-competitive and		
	un -competitive inhibitions.		
Q 2	Derive Michalis-Menten equation and discuss the	10+5	CO4
	significance of Km and Vmax.		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Define allosteric enzymes. How they differ from enzymes	2+2+6	CO3
	which follow the Michaelis-Menten equation.		
	Discriminate between concerted and sequential model.		
Q 2	Define allosteric enzymes. Discuss the regulation of	2+5+3	CO4
	enzyme activity by feedback inhibition with an example.		
	Or Define allesterie anzymes. Differentiate between hometronic		
	Define allosteric enzymes. Differentiate between homotropic and heterotropic effectors with suitable examples. Explain	2+2+6	
	different types of feedback inhibitions with examples		