N	am	e	

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Synthetic Biology

Semester: 6

Program: INT-BMSC-MICROBIOLOGY

Duration: 3 Hours Max. Marks: 100

Instructions: Attempt all the questions

Course Code: HSMB3018

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Synthetic promoters are engineered to:	1.5	CO1
	A. Silence gene expression		
	B. Initiate protein degradation		
	C. Initiate transcription at desired levels		
	D. Bind ribosomes		
Q 2	Which of the following is true about recombinant DNA technology?	1.5	CO2
	A. Only used for protein folding		
	B. Combines DNA from different species		
	C. Applicable only to prokaryotes		
	D. Doesn't involve cloning		
Q 3	Which genome editing tool uses RNA as a guide?	1.5	CO1
	A. Zinc-finger nucleases		
	B. CRISPR-Cas9		
	C. TALE nucleases		
	D. RNAi		
Q 4	Which challenge limits the use of genome editing in clinical therapy?	1.5	CO3
	A. Cost of reagents		
	B. Difficulty in sequencing DNA		
	C. Off-target effects and delivery issues		
	D. Availability of bacterial cultures		
Q 5	Which of the following components is essential for CRISPR-based	1.5	CO3
	editing?		
	A. DNA ligase		
	B. Guide RNA		
	C. Antibody		
	D. tRNA		
Q 6	Synthetic RNA regulators often act at the level of:	1.5	CO5
	A. DNA replication		

	B. Spliceosome assembly		
	C. mRNA stability or translation		
	D. Histone modification		
Q 7	Which of these techniques is used for gene expression control in	1.5	CO5
	synthetic biology?		
	A. Protein crystallization		
	B. qRT-PCR		
	C. Synthetic feedback loops		
	D. SDS-PAGE		
Q 8	A primary purpose of synthetic biology is to:	1.5	CO2
	A. Extract natural products		
	B. Cure viral infections directly		
	C. Create standardized biological parts		
	D. Map protein structures		
Q 9	Which technique is <i>not</i> a genome editing method?	1.5	CO2
	A. TALENs		
	B. CRISPR-Cas9		
	C. Southern blotting		
	D. Zinc-finger nucleases		
Q 10	The term "synthetic biology" is best defined as:	1.5	CO1
	A. Modifying RNA for therapy		
	B. Artificially creating biological components and systems		
	C. Using synthetic drugs for diseases		
	D. Mapping the entire genome		
Q 11	Golden Gate Assembly enables DNA assembly through:	1.5	CO1
	A. Overlapping PCR		
	B. Restriction-ligation using sticky ends		
	C. CRISPR interference		
	D. Protein tagging		
Q 12	Gibson Assembly requires:	1.5	CO5
	A. Restriction enzymes only		
	B. Ligase and exonuclease		
	C. RNA polymerase		
	D. DNA helicase		
Q 13	Which of the following is <i>not</i> involved in DNA delivery methods?	1.5	CO4
	A. Lipofection		
	B. Calcium phosphate		
	C. CRISPR array		
	D. Electroporation		
Q 14	A virus can be used as a vector to:	1.5	CO5
	A. Measure pH		
	B. Deliver DNA into host cells		
	C. Sequence proteins		
	D. Amplify mRNA		

Q 15	Which of the following is an advantage of using chemical reagents for	1.5	CO2
	DNA delivery?		
	A. High specificity for proteins		
	B. Strong immune response		
	C. Ease of use and scalability		
	D. Limited cell type targeting		
Q 16	The biological element in a biosensor could be:	1.5	CO2
	A. LED		
	B. DNA, enzyme, or antibody		
	C. Thermometer		
	D. Microchip		
Q 17	In biosensors, the transducer:	1.5	CO3
	A. Generates energy		
	B. Converts a biological response into a measurable signal		
	C. Acts as a biological receptor		
	D. Amplifies RNA		
Q 18	Which type of biosensor is commonly used for glucose detection in	1.5	CO3
	diabetes?		
	A. Optical biosensor		
	B. Piezoelectric biosensor		
	C. Electrochemical biosensor		
	D. Thermal biosensor		
Q 19	Synthetic biology-based biosensors are designed to:	1.5	CO5
	A. Randomly mutate DNA		
	B. Increase DNA replication		
	C. Detect specific cellular signals or molecules		
	D. Induce mutations		
Q 20	A major application of biosensors in environmental monitoring is:	1.5	CO1
	A. Editing genomes		
	B. Detecting GMOs		
	C. Measuring pollutant levels		
	D. Producing proteins		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Propose a method to deliver a synthetic DNA construct into plant cells.	5	CO3
	Justify your choice of delivery technique and mention the expected		
	challenges.		
Q 2	Imagine you are tasked with designing a biosensor for detecting heavy	5	CO4
	metals in water. What biological and electronic components would you		
	include, and how would the sensor function?		
Q 3	Describe an ethical dilemma associated with synthetic biology or genome	5	CO5
	editing in humans. Provide your viewpoint on how it can be addressed.		

Q 4	If a synthetic RNA regulator is used to downregulate a disease-causing	5	CO2
	gene, what considerations must be made regarding specificity, stability, and		
	delivery?		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	You're given a challenge to design a toolkit for synthetic gene	15	CO2
	construction in a resource-limited lab.		
	1. List and justify 3 essential methods/tools you would include (e.g.,		
	Gibson assembly, Golden Gate, CRISPR-Cas9). (7.5 Marks)		
	2. Explain how each tool contributes to synthetic biology and why		
	it's suited for a minimal toolkit. (7.5 Marks)		
Q 2	Synthetic biology aims to produce low-cost insulin using genetically	15	CO4
	engineered microbes.		
	1. Outline the steps you would take to design such a system. (5		
	Marks)		
	2. Describe the gene modification, host selection, protein expression,		
	and downstream purification in brief. (5 Marks)		
	3. Mention any two advantages of this method over traditional insulin		
	production. (5 Marks)		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	You discover a microorganism with an unknown gene circuit that	10	CO5
	turns it fluorescent only at night.		
	1. Propose a hypothesis about how this system might work. (5		
	Marks)		
	2. How could synthetic biology help you rewire or mimic this		
	behaviour in another organism? (5 Marks)		
Q 2	If CRISPR were a word processor, what kind of "editing tools" does it	10	CO2
	offer compared to traditional methods?		
	Use this metaphor to compare CRISPR with older genome editing tools		
	(like ZFNs and TALENs), and explain why CRISPR became so popular.		