Name:	WUPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Course: Bioseparation and Biochemical Analysis

Program: B.Tech Biotechnology

Course Code: HSBT3009

Semester : VI Duration : 3 Hours Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The technique used to separate a protein mixture based on	1.5	CO1
	molecular size is called		
Q 2	Precipitation by ammonium sulfate exploits differences in	1.5	CO1
	protein solubility.		
Q 3	Which of the following methods is most suitable for	1.5	CO1
	separating proteins based on their charge?		
	a) Gel filtration		
	b) SDS-PAGE		
	c) Ion exchange chromatography		
	d) Affinity chromatography		
Q 4	Which component plays a key role in the selective binding of	1.5	CO1
	proteins in affinity chromatography?		
	a) Ligand		
	b) Salt		
	c) pH buffer		
	d) Detergent		
Q 5	Which of the following gives a blue color with proteins? a)	1.5	CO2
	Benedict's reagent		
	b) Biuret reagent		
	c) Molisch reagent		
	d) Ninhydrin		
Q 6	Lowry's method is more sensitive than the Biuret assay.	1.5	CO2
	(True/False)		
Q 7	The DNS assay is used for estimating the amount of	1.5	CO2

a) 540 nm b) 280 nm c) 260 nm d) 420 nm Q 9 Which of the following filtration methods is based on constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False)	203
b) 280 nm c) 260 nm d) 420 nm Q 9 Which of the following filtration methods is based on constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	203
c) 260 nm d) 420 nm Which of the following filtration methods is based on constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	203
d) 420 nm Which of the following filtration methods is based on constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	203
Q 9 Which of the following filtration methods is based on constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	203
constant pressure? a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	203
a) Depth filtration b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
b) Cross-flow filtration c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
c) Dead-end filtration d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
d) Constant rate filtration Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
Q 10 A filtration process with high cake resistance will require higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
higher pressure to maintain flow. (True/False) Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	
Q 11 The driving force for ultrafiltration across a membrane is: 1.5 C	O3
	103
a) Concentration gradient	
a) contentation gradient	
b) Osmotic pressure	
c) Pressure gradient	
d) Temperature gradient	
Q 12 Which type of filtration involves passage through a 1.5 C	CO3
compressible cake layer? a) Microfiltration	
b) Cake filtration	
c) Tangential flow	
d) Reverse osmosis	
Q 13 Buffers are used in protein separation to stabilize pH during 1.5 C	O4
the process. (True/False)	
Q 14 A good buffer should have a pKa value close to: 1.5 C	O4
a) The ambient temperature	
b) The ionic strength	
c) The pH of the solution	
d) The buffer volume	
Q 15 Hollow fiber membrane modules provide the highest surface 1.5 C	O4
area among common module designs. (True/False)	
Q 16 Prefiltration is mainly used to:	O4
a) Concentrate the product	
b) Remove dissolved ions	
c) Eliminate suspended particles	
d) Elute the protein	
Q 17 Chromatographic scale-up only involves increasing column 1.5 C	O5
diameter. (True/False)	
Q 18 Which unit operation is best for recovering intracellular 1.5 C	CO5
proteins?	

	a) Foam fractionation		
	b) Homogenization		
	c) Ultrafiltration		
	d) Dialysis		
Q 19	The final step in industrial protein purification usually aims	1.5	CO5
	to achieve high purity.		
Q 20	Which analytical technique is often used for identity	1.5	CO5
	verification of a therapeutic protein?		
	a) UV-Vis spectroscopy		
	b) Western blotting		
	c) TLC		
	d) ELISA		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	What role does ammonium sulfate play in protein	5	CO1
	precipitation? Give one example.		
Q 2	Explain the Biuret test and how it indicates the presence of	5	CO2
-	proteins.		
Q 3	What is cross-flow filtration? How is it different from dead-	5	CO3
	end filtration?		
Q 4	Define buffer capacity. What factors influence the buffering	5	CO4
	action?		
	Section C		
	(2Qx15M=30 Marks)		1
Q 1	SDS-PAGE is commonly used for analyzing protein size and	15	CO3
	purity.		
	Explain the principle of SDS-PAGE and why SDS is used. (5		
	marks)		
	Describe the role of stacking and resolving gels in the		
	separation process. (5 marks)		
	How can the results from SDS-PAGE help in assessing the		
	success of a purification step? (5 marks)		
Q 2	You are planning to purify a recombinant protein that	15	CO4
Q 2	You are planning to purify a recombinant protein that includes a Maltose-Binding Protein (MBP) tag to aid	15	CO4
Q 2	includes a Maltose-Binding Protein (MBP) tag to aid	15	CO4
Q 2		15	CO4

	List the steps involved in purifying an MBP-tagged protein				
	using affinity chromatography. (5 marks)				
	Mention two precautions that must be taken during scale-up				
	to prevent product loss. (5 marks)				
	Section D				
	(2Qx10M=20 Marks)				
Q 1	Thin Layer Chromatography (TLC) is used to separate and	10	CO5		
	identify compounds in a mixture.				
	What is the principle behind TLC? (3 marks)				
	List the major components used in a basic TLC setup. (3				
	marks)				
	Explain how you would calculate the Rf value and interpret				
	results (4 marks)				
Q 2	A researcher is isolating DNA from cultured cells for	10	CO2		
	downstream molecular applications.				
	List the key steps involved in isolating and purifying nucleic				
	acids. (5 marks)				
	Explain how the A260/A280 and A260/A230 absorbance				
	ratios are used to assess nucleic acid purity. (5 marks)				