,		-				
	N	n	11	n	Δ	•

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Bioinformatics and Computational Biology

Program: B.Tech Biotechnology

Course Code: HSBT3008

Semester: VI

Duration: 3 Hours

Max. Marks: 100

Instructions:

S. No.	Section A		COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Computational biology only deals with protein folding	1.5	CO1
	simulations. (True/False)		
Q 2	Which of the following is a key aim of bioinformatics?	1.5	CO1
	a) Replace lab work		
	b) Store biological data		
	c) Engineer proteins		
	d) Perform surgery		
Q 3	GenBank is a protein sequence database. (True/False)	1.5	CO1
Q 4	Which of the following was the first widely used global	1.5	CO1
	alignment algorithm?		
	a) FASTA		
	b) BLAST		
	c) Smith-Waterman		
	d) Needleman-Wunsch		
Q 5	NCBI provides tools like BLAST, Primer-BLAST, and	1.5	CO1
	ClinVar. (True/False)		
Q 6	Which database stores gene expression data?	1.5	CO2
	a) PDB		
	b) SRA		
	c) GEO		
	d) ChEMBL		
Q 7	RNA-seq data can be found in the Sequence Read Archive	1.5	CO2
	(SRA). (True/False)		
Q 8	Which of the following is NOT typically found in a GenBank entry?	1.5	CO2

	a) Annotations		
	b) 3D structure		
	c) Nucleotide sequence		
	d) References		
Q 9	Which organization developed AlphaFold?	1.5	CO2
-	a) Google Brain		
	b) IBM Watson		
	c) DeepMind		
	d) OpenAI		
Q 10	Which of the following databases focuses on biological	1.5	CO2
_	pathways?		
	a) UniProt		
	b) Reactome		
	c) PDB		
	d) SRA		
Q 11	PAM matrices are used to find conserved regulatory	1.5	CO2
	sequences. (True/False)		
Q 12	Which type of alignment does the Smith-Waterman	1.5	CO2
	algorithm perform?		
	a) Global		
	b) Local		
	c) Semi-global		
	d) None		
Q 13	Sequence alignment is a prerequisite for phylogenetic tree	1.5	CO3
	construction. (True/False)		
Q 14	Which of the following best represents an unrooted tree?	1.5	CO3
	a) Circular plot		
	b) Ladder		
	c) Tree without a common ancestor		
	d) Bar graph		
Q 15	Clustal Omega is a tool for multiple sequence alignment.	1.5	CO3
	(True/False)		
Q 16	Which of the following helps visualize protein-drug	1.5	CO3
	interaction in 3D?		
	a) PyMOL		
	b) BLASTN		
	c) RAxML		
	d) Reactome		
Q 17	Cryo-EM does not require crystallization of the molecule.	1.5	CO3
	(True/False)		

Q 18	Which of the following is used for visualizing molecular	1.5	CO3
Q 10	structures?	1.0	005
	a) Excel		
	b) Word		
	c) PyMOL		
	d) Tableau		
Q 19	BLOSUM matrices are derived from alignments of highly	1.5	CO3
	divergent sequences. (True/False)		
Q 20	The one key outcome of AlphaFold2's development as	1.5	CO3
	highlighted in the 2024 Nobel Prize announcement is:		
	a) Eradication of protein misfolding diseases		
	b) Prediction of structures of nearly all known proteins		
	c) Automated synthesis of proteins in bacteria		
	d) Discovery of quantum protein folding algorithms		
			-
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Define Ramachandran plot. How does it help in validating a	5	CO1
	protein model?		
Q 2	Describe how the GEO database is used in gene expression	5	CO2
	analysis. Provide an example of its application.		
Q 3	Describe the function of scoring matrices in sequence	5	CO2
	alignment. Why are PAM and BLOSUM commonly used?		
Q 4	Explain the difference between global and local sequence	5	CO3
	alignment with suitable examples.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	You are given a task to study the structure and function	15	CO2
	of the tumor suppressor protein p53, which plays a key		
	role in preventing cancer. Your objective is to analyze its		
	secondary structure, predict its 3D model, and visualize		
	it.		
	a) As a starting point, you are asked to review the secondary		
	structure elements present in p53.		
	Define alpha helices and beta sheets , and briefly explain the		
	forces that stabilize them. (5 Marks)		
	b) Next, you use the SWISS-MODEL tool to predict the 3D		
	structure of p53. Explain how SWISS-MODEL uses		
	homology modeling to assist in structure prediction. (5		
	Marks)		

c) Finally, you are instructed to visualize the modeled p53		
, , , , , , , , , , , , , , , , , , , ,		
<u> </u>	15	CO3
-	10	
_		
1		
_		
1		
,		
1		
the Ramachandran plot shows and how it helps validate the		
accuracy of a protein model. (5 Marks)		
Section D		
(2Qx10M=20 Marks)		
Explain how tools like AlphaFold and PyMOL have	10	CO3
transformed protein structure prediction and visualization. (5		
Marks)		
Discuss one example where structure prediction helped in		
understanding a disease or designing a drug. (5 Marks)		
	10	CO2
trees. (5 marks)		
` '		
	Section D (2Qx10M=20 Marks) Explain how tools like AlphaFold and PyMOL have transformed protein structure prediction and visualization. (5 Marks) Discuss one example where structure prediction helped in understanding a disease or designing a drug. (5 Marks) Define phylogenetic tree? Explain the types of phylogenetic	structure using PyMOL.List and explain three key features of PyMOL that make it useful in molecular visualization and protein analysis. (5 Marks) You are part of a bioinformatics research team working on predicting and validating the 3D structure of a newly discovered protein. a) Your team is discussing different techniques used to determine biomolecular structures. Choose any two techniques your team might consider and explain: How the technique works (principle), What level of detail (resolution) it provides, one key advantage and one limitation of each and how each technique is useful in bioinformatics research (10 Marks) b) After building a 3D model of the protein, your teammate suggests checking the Ramachandran plot. Explain what the Ramachandran plot shows and how it helps validate the accuracy of a protein model. (5 Marks) Section D (2Qx10M=20 Marks) Explain how tools like AlphaFold and PyMOL have transformed protein structure prediction and visualization. (5 Marks) Discuss one example where structure prediction helped in understanding a disease or designing a drug. (5 Marks) Define phylogenetic tree? Explain the types of phylogenetic trees. (5 marks) Discuss how sequence alignment data is used to understand