| N | am | e | | |---|----|---|--| | | | | | ## **Enrolment No:** ## **UPES** **End Semester Examination, May 2025** **Course: Animal and Plant Biotechnology** Semester: 6 Program: BT-BIOTECHNOLOGY **Course Code: HSBT3007** Duration: 3 Hours Max. Marks: 100 **Instructions: Attempt all the questions** | S. No. | Section A | Marks | COs | |--------|---|-------|-----| | | Short answer questions/ MCQ/T&F | | | | | (20Qx1.5M=30 Marks) | | | | Q 1 | The ability of plant cells to regenerate a whole plant is called: | 1.5 | CO1 | | | A. Plasticity | | | | | B. Embryogenesis | | | | | C. Totipotency | | | | | D. Morphogenesis | | | | Q 2 | Which is not a sterilization method in plant tissue culture? | 1.5 | CO2 | | | A. Autoclaving | | | | | B. UV exposure | | | | | C. Ethanol | | | | | D. Chlorophyll extraction | | | | Q 3 | Murashige and Skoog (MS) medium is widely used for: | 1.5 | CO1 | | | A. Bacterial culture | | | | | B. Plant tissue culture | | | | | C. Animal cell culture | | | | | D. DNA extraction | | | | Q 4 | Somatic hybridization involves fusion of: | 1.5 | CO3 | | | A. Zygotes | | | | | B. Protoplasts | | | | | C. Seeds | | | | | D. Nuclei | | | | Q 5 | Organogenesis refers to the formation of: | 1.5 | CO3 | | | A. Embryos | | | | | B. Organs like shoots and roots | | | | | C. Seeds | | | | | D. Flowers | | | | Q 6 | Somatic embryogenesis occurs from: | 1.5 | CO5 | | | A. Fertilized eggs | | | | | B. Somatic cells | | | | | C. Gametes | | | |------|---|-----|-----| | | D. Apical meristems | | | | Q 7 | Protoplast isolation is useful in: | 1.5 | CO5 | | | A. Tissue hardening | | | | | B. Cell wall formation | | | | | C. Hybrid formation | | | | | D. Genetic stability | | | | Q 8 | An example of synthetic seed production involves: | 1.5 | CO2 | | _ | A. Use of fertilizers | | | | | B. Encapsulating somatic embryos | | | | | C. Grafting | | | | | D. Spray drying | | | | Q 9 | Meristem culture is primarily used for: | 1.5 | CO2 | | | A. Somatic variation | | | | | B. Embryo rescue | | | | | C. Virus elimination | | | | | D. Hybrid seed production | | | | Q 10 | Genetic fidelity in micropropagation is checked using: | 1.5 | CO1 | | | A. ELISA | | | | | B. DNA markers | | | | | C. Starch tests | | | | | D. Microscopy | | | | Q 11 | Agrobacterium tumefaciens naturally transfers DNA via: | 1.5 | CO1 | | | A. T-DNA | | | | | B. mRNA | | | | | C. Viral vector | | | | | D. RNAi | | | | Q 12 | A. rhizogenes is used for inducing: | 1.5 | CO5 | | | A. Tumors | | | | | B. Roots | | | | | D. Roots | | | | | C. Callus | | | | | C. Callus | | | | 0 13 | C. Callus D. Embryos | 1.5 | CO4 | | Q 13 | C. Callus | 1.5 | CO4 | | Q 13 | C. Callus D. Embryos Transplastomics involves genetic modification of: | 1.5 | CO4 | | Q 13 | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids | 1.5 | CO4 | | Q 13 | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria | 1.5 | CO4 | | Q 13 | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum | 1.5 | CO4 | | | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum D. Nucleus | | | | | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum D. Nucleus Direct gene transfer in plants does not include: A. Electroporation | | | | | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum D. Nucleus Direct gene transfer in plants does not include: A. Electroporation B. Microinjection | | | | | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum D. Nucleus Direct gene transfer in plants does not include: A. Electroporation | | | | | C. Callus D. Embryos Transplastomics involves genetic modification of: A. Mitochondria B. Plastids C. Endoplasmic reticulum D. Nucleus Direct gene transfer in plants does not include: A. Electroporation B. Microinjection C. Agrobacterium infection | | | | | B. Gene expression | | | |--------------|---|-----|------| | | C. DNA replication | | | | | D. Enzyme digestion | | | | Q 16 | A commonly used reporter gene in plant transformation is: | 1.5 | CO2 | | C = * | A. GUS | _,_ | | | | B. Bt | | | | | C. Actin | | | | | D. Tubulin | | | | Q 17 | Transgene silencing refers to: | 1.5 | CO3 | | | A. Amplification of gene expression | | | | | B. Complete gene knockout | | | | | C. Suppression of introduced gene expression | | | | | D. RNA replication | | | | Q 18 | Copy number analysis is done to: | 1.5 | CO3 | | | A. Identify bacterial species | | | | | B. Detect DNA damage | | | | | C. Count the number of gene insertions | | | | | D. Measure chlorophyll | | | | Q 19 | Marker-free transgenics are preferred because they: | 1.5 | CO5 | | | A. Are easier to grow | | | | | B. Have no selectable markers like antibiotic resistance | | | | | C. Are cheaper | | | | | D. Grow faster | | | | Q 20 | Which trait has been successfully introduced using genetic | 1.5 | CO1 | | | engineering in plants? | | | | | A. Insect resistance | | | | | B. Faster ripening | | | | | C. Salt tolerance | | | | | D. All of the above | | | | | Section B | | | | Λ1 | (4Qx5M=20 Marks) | - | CO2 | | Q 1 | Suppose a farmer asks you to quickly develop virus-free plants of an | 5 | CO3 | | | endangered species. | | | | 0.2 | Which plant tissue culture technique would you recommend and why? | 5 | CO4 | | Q 2 | Marker-assisted selection sounds complex to farmers. Explain the concept to a layperson using a real-life analogy (e.g., | 5 | CO4 | | | identifying a ripe fruit without cutting it open). | | | | <u>O 2</u> | | 5 | CO5 | | Q 3 | How would you use synthetic seeds in areas where natural propagation is difficult? | 5 | 003 | | | Give one practical example and briefly describe the process involved. | | | | Q 4 | What are the advantages of using transplastomic plants over nuclear | 5 | CO2 | | 4 | transgenics? | 3 | 1002 | | | Explain in simple terms with one example crop or trait. | | | | | Explain in simple terms with one example crop of trait. | | | | | (2Qx15M=30 Marks) | | | |-----|---|----|-----| | Q1 | Create a comparison chart between the three major genome editing tools – CRISPR-Cas9, TALENs, and Zinc-Finger Nucleases. 1. Highlight at least five parameters (e.g., ease of use, cost, precision, off-target effects, applications). (7.5 Marks) 2. Then, based on your comparison, recommend the best choice for editing a gene in tomato plants for disease resistance. (7.5 Marks) | 15 | CO2 | | Q 2 | Imagine you are part of a regulatory committee evaluating a genetically modified plant with herbicide resistance. 1. What molecular analyses would you perform to assess the transgene's stability and expression? (5 Marks) 2. What environmental or ethical factors would you consider before approval? (5 Marks) 3. Conclude with your verdict and justification for approval or rejection. (5 Marks) | 15 | CO4 | | | Section D | | | | | (2Qx10M=20 Marks) | | | | Q 1 | List and explain the different types of nutrient media used in plant tissue culture. (5 Marks) Include the role of plant growth regulators in in vitro regeneration processes. (5 Marks) | 10 | CO5 | | Q 2 | Discuss the significance of marker genes and reporter genes in genetic transformation studies. (5 Marks) Explain their functions with examples and describe how they help confirm successful transformation. (5 Marks) | 10 | CO2 |