| T T | r | | |-----|-----|----| | | ame | ٠. | | Τ.4 | amt | | ## **Enrolment No:** ## **UPES** ## **End Semester Examination, May 2025** **Course: Biomedical Assistive Devices** Semester:6 Program: BT-BIOMEDICAL ENGINEERING **Duration: 3 Hours** Course Code: HSTX3002P Max. Marks: 100 **Instructions: Attempt all the questions** | S. No. | Section A | Marks | COs | |--------|---|-------|-----| | | Short answer questions/ MCQ/T&F | | | | | (20Qx1.5M= 30 Marks) | | | | Q 1 | Which device would most likely be used for a person with lower limb | 1.5 | CO1 | | | amputation? | | | | | a) Ankle-foot orthosis | | | | | b) Visual prosthetic | | | | | c) Lower-limb prosthesis | | | | | d) Hearing aid | | | | Q 2 | Which component is typically integrated into a smart assistive device | 1.5 | CO2 | | | for real-time feedback? | | | | | a) Passive resistor | | | | | b) Motion sensor | | | | | c) Static inductor | | | | | d) AC motor | | | | Q 3 | What type of assistive device is designed to support or align body | 1.5 | CO1 | | | segments? | | | | | a) Cognitive aid | | | | | b) Orthotic device | | | | | c) Prosthetic limb | | | | | d) Visual display | | | | Q 4 | The use of AI in hearing aids mainly contributes to: | 1.5 | CO3 | | | a) Size reduction | | | | | b) Cost reduction | | | | | c) Noise cancellation and adaptive listening | | | | | d) Battery backup | | | | Q 5 | A powered exoskeleton is MOST beneficial to: | 1.5 | CO3 | | | a) Increase blood flow | | | | | b) Enhance mobility for spinal cord injury patients | | | | | c) Monitor blood sugar | | | | | d) Improve vision | | | | Q 6 | Which feature ensures the long-term usability of a prosthetic limb? | 1.5 | CO5 | |------|--|-----|-----| | | a) Flexibility in color | | | | | b) High cost | | | | | c) Durability and user comfort | | | | | d) Length adjustment | | | | Q 7 | AAC systems are primarily used to support individuals with: | 1.5 | CO5 | | | a) Vision loss | | | | | b) Hearing impairment | | | | | c) Cognitive disorders | | | | | d) Speech and language disorders | | | | Q 8 | What is the role of ISO/IEC standards in assistive device | 1.5 | CO2 | | | manufacturing? | | | | | a) Marketing | | | | | b) Design aesthetics | | | | | c) Safety, quality, and interoperability | | | | | d) Branding | | | | Q 9 | Which device translates written text into tactile Braille output? | 1.5 | CO2 | | | a) Hearing aid | | | | | b) Braille display | | | | | c) Smart reader | | | | | d) Exosuit | | | | Q 10 | Which material is often used in prosthetics for its lightweight and | 1.5 | CO1 | | | durable nature? | | | | | a) Glass | | | | | b) PVC | | | | | c) Carbon fiber | | | | | d) Steel | | | | Q 11 | Which of the following assistive devices is non-wearable? | 1.5 | CO1 | | | a) Robotic arm | | | | | b) Exoskeleton | | | | | c) Powered wheelchair | | | | | d) Prosthetic leg | | | | Q 12 | Somatic hybridization is to plant biology as is to assistive | 1.5 | CO5 | | | technology. | | | | | a) Prosthetics | | | | | b) Myoelectric interfacing | | | | | c) Brain-computer interfacing (BCI) | | | | | d) Biochips | | ~~. | | Q 13 | Which application of tissue culture directly correlates with assistive | 1.5 | CO4 | | | device development? | | | | | a) Somaclonal variation | | | | | b) In vitro conservation | | | | | c) Custom biomaterial scaffolds | | | | | d) Cryopreservation | | | | Q 14 | The main challenge in designing AI-powered assistive wearables is: | 1.5 | CO5 | |------------|---|-----|-------------| | | a) Lack of funding | | | | | b) Complexity in coding | | | | | c) Maintaining real-time response and data privacy | | | | | d) Battery installation | | | | Q 15 | Which device aids individuals with both hearing and visual | 1.5 | CO2 | | | impairments in navigation? | | | | | a) Smart cane with GPS and haptic feedback | | | | | b) Exoskeleton | | | | | c) Magnifying lens | | | | | d) Braille books | | | | Q 16 | Which of the following would MOST benefit from personalized | 1.5 | CO2 | | | medicine in assistive tech? | | | | | a) Prosthetic limb user | | | | | b) Individual with speech disability | | | | | c) Chronic neurological patient using BCI | | | | | d) Orthotic shoe user | | | | Q 17 | Which is an example of a device used for auditory rehabilitation? | 1.5 | CO3 | | | a) Braille reader | | | | | b) Cochlear implant | | | | | c) Smart cane | | | | | d) AAC device | | | | Q 18 | User-centric design primarily focuses on: | 1.5 | CO3 | | | a) Cost-efficiency | | | | | b) Visual appeal | | | | | c) Safety, comfort, and usability | | | | | d) Technical complexity | | | | Q 19 | Which assistive technology uses muscle signal detection for operation? | 1.5 | CO5 | | | a) Smart glasses | | | | | b) Myoelectric prosthesis | | | | | c) Cognitive aid | | | | | d) Braille scanner | | | | Q 20 | Which ethical aspect is critical in AI-integrated assistive technologies? | 1.5 | CO1 | | | a) Weight control | | | | | b) Signal processing | | | | | c) Data privacy and informed consent | | | | | d) Battery optimization | | | | | Section B | | | | | (4Qx5M=20 Marks) | | | | Q 1 | Discuss the concept of brain-computer interfaces (BCIs) and their potential | 5 | CO3 | | | applications in assistive technology. | | | | Q 2 | Explain the working principle of a digital hearing aid. How is it different | 5 | CO4 | | | from analog hearing aids? | | | | Q 3 | Write a short note on the significance of cognitive and speech assistive devices. | 5 | CO5 | |-----|---|----|-----| | Q 4 | What is the importance of genetic fidelity in plant tissue culture, and how can it be ensured? | 5 | CO2 | | | Section C | | | | | (2Qx15M=30 Marks) | | | | Q1 | Interdisciplinary Approach: Designing a Smart Orthotic System for Postural Correction You're part of a team tasked with designing a smart orthotic device to help office workers with poor posture and early signs of spinal misalignment. Your answer should address: Concept of the device and its need in a sedentary workforce (3 marks) Materials used for comfort and biomechanical support (2 marks) Sensors and electronics for posture tracking and feedback (3 | 15 | CO2 | | | marks) Integration with mobile apps or cloud for data logging (2 marks) Ethical aspects like data collection and user dependency (2 marks) Potential user feedback strategies for product refinement (3 marks) | | | | Q 2 | Application-Based Question: Technology Roadmap for AI-based Visual Assistive Devices Visual impairment affects millions globally. Draft a technology roadmap for developing an AI-based wearable visual assistive system (like smart glasses) that aids in navigation, object recognition, and reading. Your plan should include: • System architecture and core features (2 marks) • Use of AI/ML for object or text recognition (3 marks) • Audio/visual feedback mechanisms (2 marks) • Hardware and software integration (3 marks) • Cost, accessibility, and social acceptance (2 marks) • Challenges and future enhancements (3 marks) | 15 | CO4 | | | Section D | | | | | (2Qx10M=20 Marks) | | | | Q1 | Could a Wheelchair Think for You? Imagine an AI-Powered Mobility Aid With AI integration, assistive devices are becoming more intuitive. Imagine you're designing a smart wheelchair that can learn and adapt to the user's daily routine. In your answer, describe: • The core features of your AI-powered wheelchair (2 marks) | 10 | CO5 | | | How it could assist differently in indoor vs outdoor environments (2 marks) Role of machine learning in predicting user preferences (3 marks) One major ethical or safety concern and how you'd address it (3 marks) | | | |-----|--|----|-----| | Q 2 | Design a wearable assistive device for visually impaired users that helps them navigate unfamiliar indoor environments like malls or hospitals. Marking Scheme Suggestion (15 Marks): Problem definition & user needs (2) Technical features (2) Materials & power source (2) Safety, comfort, and usability (2) Future scope or limitations (2) | 10 | CO2 |