| N | am | e | : |
|---|----|---|---|
|   |    |   |   |

## **Enrolment No:**



## **UPES**

## **End Semester Examination, May 2025**

Course: Microbial Genetics Semester : VI

Program: Int. BSc.MSc. Microbiology Duration : 3 hours

Course Code: HSMB 3017 Max. Marks: 100

## **Instructions:**

| S. No. | Section A                                                       | Marks | Cos |  |
|--------|-----------------------------------------------------------------|-------|-----|--|
|        | Short answer questions/ MCQ/T&F                                 |       |     |  |
|        | (20Qx1.5M = 30 Marks)                                           |       |     |  |
| Q 1    | Generalized transduction only transfers:                        | 1.5   | CO2 |  |
|        | a) Random DNA                                                   |       |     |  |
|        | b) Phage DNA                                                    |       |     |  |
|        | c) Adjacent host genes                                          |       |     |  |
|        | d) Entire chromosome                                            |       |     |  |
| Q 2    | Identify which gene controls competence in <i>B. subtilis</i> . | 1.5   | CO2 |  |
|        | a) com                                                          |       |     |  |
|        | b) lexA                                                         |       |     |  |
|        | c) comp                                                         |       |     |  |
|        | d) araC                                                         |       |     |  |
| Q 3    | Identify filamentous phage from the following.                  | 1.5   | CO2 |  |
|        | a) T4                                                           |       |     |  |
|        | b) T7                                                           |       |     |  |
|        | c) M13                                                          |       |     |  |
|        | d) Lambda                                                       |       |     |  |
| Q 4    | Recall, which of these is a chemical mutagen.                   | 1.5   | CO1 |  |
|        | a) UV radiation                                                 |       |     |  |
|        | b) X-rays                                                       |       |     |  |
|        | c) EMS                                                          |       |     |  |
|        | d) Heat                                                         |       |     |  |
| Q 5    | Transduction requires:                                          | 1.5   | CO1 |  |
|        | a) Pilus                                                        |       |     |  |
|        | b) Bacteriophage                                                |       |     |  |
|        | c) Plasmid                                                      |       |     |  |
|        | d) Sigma factor                                                 |       |     |  |
| Q 6    | Two-factor crosses in phages are used to:                       | 1.5   | CO1 |  |
|        | a) Determine operons                                            |       |     |  |
|        | b) Create lysogens                                              |       |     |  |
|        | c) Map genes                                                    |       |     |  |
|        | d) Observe transformation                                       |       |     |  |
| Q 7    | The main function of antitermination in T4 phage is:            | 1.5   | CO2 |  |

|            | a) Prevent replication                                               |     |     |
|------------|----------------------------------------------------------------------|-----|-----|
|            | b) Promote recombination                                             |     |     |
|            | c) Continue transcription                                            |     |     |
|            | d) Halt translation                                                  |     |     |
| Q 8        | Pick the correct answer. Which of the following follows a lytic life | 1.5 | CO2 |
|            | cycle?                                                               |     |     |
|            | a) Lambda phage                                                      |     |     |
|            | b) T4 phage                                                          |     |     |
|            | c) P2 phage                                                          |     |     |
|            | d) P4 phage                                                          |     |     |
| Q 9        | OriT refers to:                                                      | 1.5 | CO2 |
|            | a) Operator site                                                     |     |     |
|            | b) Origin of transcription                                           |     |     |
|            | c) Origin of transfer                                                |     |     |
|            | d) Outer region                                                      |     |     |
| Q 10       | Recombination tests help identify:                                   | 1.5 | CO1 |
| -          | a) Gene expression levels                                            |     |     |
|            | b) Regulatory proteins                                               |     |     |
|            | c) Genetic linkage                                                   |     |     |
|            | d) DNA replication errors                                            |     |     |
| Q11        | Spot, which mutation type is caused by tautomeric shifts.            | 1.5 | CO2 |
|            | a) Frameshift                                                        |     |     |
|            | b) Transition                                                        |     |     |
|            | c) Deletion                                                          |     |     |
|            | d) Insertion                                                         |     |     |
| Q12        | Identify, which organism is naturally competent.                     | 1.5 | CO2 |
|            | a) E. coli                                                           |     |     |
|            | b) B. subtilis                                                       |     |     |
|            | c) Salmonella typhi                                                  |     |     |
|            | d) Mycobacterium leprae                                              |     |     |
| Q13        | The lac operon is regulated by:                                      | 1.5 | CO2 |
|            | a) Only lactose                                                      |     |     |
|            | b) Only glucose                                                      |     |     |
|            | c) Both positive and negative mechanisms                             |     |     |
|            | d) Phage integration                                                 |     |     |
| Q14        | Plasmid integration into the chromosome forms:                       | 1.5 | CO2 |
|            | a) Hfr strain                                                        |     |     |
|            | b) F- cell                                                           |     |     |
|            | c) Prime factor                                                      |     |     |
|            | d) Transposon                                                        |     |     |
| Q15        | The 'jumping genes' discovered by Barbara McClintock are known       | 1.5 | CO1 |
|            | as:                                                                  |     |     |
|            | a) Operons                                                           |     |     |
|            | b) Episomes                                                          |     |     |
|            | c) Transposons d) Plasmids                                           |     |     |
| Q16        | Marker rescue is a technique used for:                               | 1.5 | CO1 |
| <b>410</b> | a) Mutant enrichment                                                 | 1.0 |     |

|            | b) Gene mapping                                                                                                        |      |     |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------|------|-----|--|--|--|--|
|            | c) Cloning based on functional restoration                                                                             |      |     |  |  |  |  |
|            | d) Complementation testing                                                                                             |      |     |  |  |  |  |
| Q17        |                                                                                                                        |      |     |  |  |  |  |
|            | a) Reversions                                                                                                          |      | CO1 |  |  |  |  |
|            | b) Intragenic or intergenic                                                                                            |      |     |  |  |  |  |
|            | c) Dominant                                                                                                            |      |     |  |  |  |  |
|            | d) Recessive only                                                                                                      | only |     |  |  |  |  |
| Q18        |                                                                                                                        |      |     |  |  |  |  |
| Q10        | a) Generalized transduction                                                                                            | 1.0  | CO1 |  |  |  |  |
|            | b) Specialized transduction                                                                                            |      |     |  |  |  |  |
|            | c) Transformation                                                                                                      |      |     |  |  |  |  |
|            | d) Lysis only                                                                                                          |      |     |  |  |  |  |
| Q19        | Identify, which method allows mapping of bacterial genes based on                                                      | 1.5  | CO1 |  |  |  |  |
| Q19        | time of entry during conjugation.                                                                                      | 1.3  | COI |  |  |  |  |
|            | a) Transformation                                                                                                      |      |     |  |  |  |  |
|            | b) Generalized transduction                                                                                            |      |     |  |  |  |  |
|            | c) Hfr conjugation                                                                                                     |      |     |  |  |  |  |
|            | d) Site-specific recombination                                                                                         |      |     |  |  |  |  |
| 020        |                                                                                                                        | 1.5  | CO2 |  |  |  |  |
| Q20        | Spot which system is an example of site-specific recombination                                                         | 1.5  | COZ |  |  |  |  |
|            | commonly used in genetic engineering.                                                                                  |      |     |  |  |  |  |
|            | a) lac operon                                                                                                          |      |     |  |  |  |  |
|            | b) T4 phage lytic system                                                                                               |      |     |  |  |  |  |
|            | c) loxP-Cre system                                                                                                     |      |     |  |  |  |  |
|            | d) SOS repair system  Section B                                                                                        |      |     |  |  |  |  |
|            | (4Qx5M=20 Marks)                                                                                                       |      |     |  |  |  |  |
| Q 1        | Explain the role of base analogues in mutagenesis with example of                                                      | 5    | CO2 |  |  |  |  |
| Q I        | one agent.                                                                                                             | J    | 002 |  |  |  |  |
| Q 2        | Distinguish between base excision repair and mismatch repair.                                                          | 5    | CO1 |  |  |  |  |
|            | Differentiate between positive and negative selection of mutants in                                                    |      | CO2 |  |  |  |  |
| Q3         | microbial genetics.                                                                                                    | 5    | CO2 |  |  |  |  |
| Q 4        | In case of lac operon the levels of structural proteins differs in ratio                                               | 5    | CO1 |  |  |  |  |
| Q4         | of 1:0.5:2 as you move from beginning to end of operon. Reason                                                         | 3    | COI |  |  |  |  |
|            |                                                                                                                        |      |     |  |  |  |  |
|            | why.  Section C                                                                                                        |      |     |  |  |  |  |
|            | Section C<br>(2Qx15M=30 Marks)                                                                                         |      |     |  |  |  |  |
| Q 1        | Experiments using rII mutants of T4 phage were instrumental in                                                         | 15   | CO2 |  |  |  |  |
| <b>V</b> I | deciphering the genetic code. In one such experiment, a double                                                         | 10   | 002 |  |  |  |  |
|            | mutant was used to study intragenic recombination.                                                                     |      |     |  |  |  |  |
|            | industr was used to study intrageme recombination.                                                                     |      |     |  |  |  |  |
|            | a) Name the scientist who worked on rII locus? (1)                                                                     |      |     |  |  |  |  |
|            | b) Spot the significance of rII mutants in phage genetics? (3)                                                         |      |     |  |  |  |  |
|            | c) Describe how complementation and recombination tests were                                                           |      |     |  |  |  |  |
|            | used in this context. (6)                                                                                              |      |     |  |  |  |  |
|            |                                                                                                                        |      |     |  |  |  |  |
|            |                                                                                                                        |      |     |  |  |  |  |
|            | d) Describe how complementation groups are created using the example below where zero means no complementation while _ |      |     |  |  |  |  |

|     | Strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                         | 2        | 3          | 4         | 5          | 6         |     |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|------------|-----------|------------|-----------|-----|-----|
|     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                         | 0        | +          | 0         | 0          | 0         |     |     |
|     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 0        | +          | +         | 0          | 0         |     |     |
|     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |          | 0          | +         | +          | 0         |     |     |
|     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |          |            | 0         | +          | +         |     |     |
|     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |          |            |           | 0          | +         |     |     |
|     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |          |            |           |            | 0         |     |     |
| Q 2 | A cancer arose i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in a heal                 | thy pers | son with r | no genet  | ic or envi | ronmental | 15  | CO2 |
|     | A cancer arose in a healthy person with no genetic or environmental history. The doctor diagnosed a jumping gene which integrated into a tumor suppressor gene to be responsible for it. With your knowledge of microbial genetics and molecular biology, answer the following:  a. Define jumping genes. (1)  b. Name the scientist who discovered jumping genes and in which organism? (2)  c. Elaborate if there are different kinds/types of these jumping genes. Classify them. (5)  d. Explain, how do these genes cause mutations? (3)  e. Discuss the role of jumping genes in mapping. (4) |                           |          |            |           |            |           |     |     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |          | (2Qx10N    |           |            |           |     |     |
| Q1  | <ul> <li>A student performs an interrupted mating experiment using an Hfr strain and a recipient F− strain. The order of gene transfer observed is: leu → thr → his → lac → gal.</li> <li>a) Explain the principle of interrupted mating and how it is used to map bacterial genes. (5)</li> <li>b) Name the scientists who used it first? (1)</li> <li>c) Based on the gene transfer order, construct a partial map of the</li> </ul>                                                                                                                                                              |                           |          |            |           |            | 10        | CO1 |     |
| Q 2 | a. Elaborate transcription highlighted b. Illustrate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the<br>onal reg<br>d. (7) | life cy  | and cho    | oice of l |            | lysogeny  | 10  | CO1 |