Name:		W Ui	WUPES	
Enrolment No:			UNIVERSITY OF TOMORROW	
	UPES			
	End Semester Examination, May 2025			
Course: Microbial Analysis of Air and Water Program: B.Sc. Microbiology		Semester	: VI	
		Duration : 3 Hour		
Course	Code: HSMB3007P	Max. Marks: 100		
Instruc	tions: Read all questions carefully.			
S. No.	Section A	Marks	COs	
	Short answer questions/ MCQ/T&F			
	(20Qx1.5M= 30 Marks)			
Q 1	is most effective against bacterial endospores in air	1.5	CO1	
	systems:			
	A) HEPA filtration			
	B) UV-C exposure			
	C) Dry heat			
	D) Incineration			
Q 2	HEPA filters can capture particles:	1.5	CO1	
	A) ≥1 μm			
	B) ≥0.3 µm			
	C) ≤5 μm			
	D) Only visible particles			
Q 3	is <i>not</i> a consequence of microbial bioaerosols in	1.5	CO2	
	pharma industries:			
	A) Product contamination			
	B) Reduced production yield			
	C) Cross-contamination of raw materials			
	D) Increased product shelf life			
Q 4	The presumptive coliform test typically involves:	1.5	CO1	
	A) Nutrient agar and streak plating			
	B) Lactose broth and Durham tubes			

C) Tryptic soy broth with pH indicator

In CFU calculation from air samples, the key assumption is:
A) Each organism divides into three
B) Each CFU arises from a single viable cell

1.5

CO1

D) Blood agar with bile salts

Q 5

	C) Only anaerobic organisms grow		
	D) Air temperature must be above 37°C		
Q 6	Presence of gas in the Durham tube during MPN test	1.5	CO1
	indicates:		
	A) Anaerobic contamination		
	B) Thermophilic organisms		
	C) Coliform fermentation		
Q 7	D) Absence of bacteria The confirmed test in water analysis typically uses:	1.5	CO1
Q /	A) EMB agar	1.3	COI
	B) MacConkey broth		
	C) Mueller-Hinton agar		
	D) Nutrient agar		
Q 8	A high CFU count in a clean room sample indicates:	1.5	CO1
	A) Good air circulation		
	B) Adequate disinfection		
	C) Overgrowth by fast-growing species		
	D) Microbial contamination beyond acceptable limits		
Q 9	The inactivation mechanism of UV-C light primarily targets:	1.5	CO1
	A) Cell wall		
	B) Cytoplasmic membrane		
	C) DNA/RNA		
	D) Mitochondria		
Q 10	The presence of fungal spores in bioaerosols is most	1.5	CO2
	dangerous for:		
	A) Dairy industry		
	B) Immunocompromised hospital patients		
	C) Textile workers		
	D) Water purification staff		
Q 11	Bioaerosols can include endotoxins and mycotoxins in	1.5	CO1
~ ==	addition to microorganisms. (True/False)		
Q 12	Gram-negative bacteria are more resistant to desiccation than	1.5	CO1
-	Gram-positive bacteria. (True/False)		
Q 13	The MPN test is based on statistical probability of coliform	1.5	CO2
-	presence. (True/False)		
Q 14	UV disinfection is equally effective in all types of	1.5	CO1
· - ·	microorganisms. (True/False)		
Q 15	Bioaerosols can trigger occupational asthma in workers	1.5	CO1
Q 13	exposed to organic dust. (True/False)	-10	
Q 16	Sampling air with passive sedimentation is more accurate	1.5	CO2

Q 17	Membrane filtration allows for direct enumeration of	1.5	CO2
Q17		1.5	CO2
Λ 10	coliform colonies. (True/False)	1.5	CO1
Q 18	Boiling water ensures complete removal of all microbial	1.5	COI
O 10	pathogens. (True/False)	1 5	CO1
Q 19	Bioaerosol sampling is not required in pharmaceutical	1.5	CO1
0.20	cleanrooms. (True/False)	1.5	CO2
Q 20	Water analysis for fecal coliforms is only needed for non-	1.5	CO2
	potable water. (True/False)		
	Section B		
	(4Qx5M=20 Marks)		
Q 21	Evaloin the sin compline results avanaged in CEU/m3 and	5	CO3
Q 21	Explain the air sampling results expressed in CFU/m³, and	3	COS
	apply the concept of CFU calculation to describe how plate counts are converted into air concentrations.		
O 22		5	CO2
Q 22	Compare chemical disinfection and UV sterilization in terms	3	CO2
0.22	of mode of action, effectiveness, and application constraints.	5	CO2
Q 23	Explain one method used to collect air samples for microbial	3	CO2
0.24	analysis.		CO1
Q 24	Explain the difference between the presumptive and	5	CO1
	confirmed tests in the MPN method for water analysis. Section C		
	Section C (2Qx15M=30 Marks)		
Q 25	Case study: Villagers using untreated groundwater report	5+5+5	CO3
	gastrointestinal symptoms. Water testing revealed coliforms		
	and high turbidity.		
	Questions:		
	a) Identify and explain which microbial tests you would		
	apply to confirm fecal contamination in a water sample.		
	b) Analyze the relationship between turbidity levels and		
	the survival of waterborne pathogens.		
	c) Propose and justify a practical water treatment method		
	suitable for areas affected by contamination and high		
	turbidity.		
Q 26	Case study: Routine swabbing shows increased CFUs near	5+5+5	CO3
	vents in an OT. Surgeries are being postponed.		
	Questions:		
	a) Identify the most likely source of microbial		
	contamination in the given scenario.		

	b) Describe how microbial air quality can be quantitatively assessed using appropriate sampling techniques.c) Propose immediate control methods to manage and reduce microbial contamination in the environment.			
Section D				
(2Qx10M=20 Marks)				
Q 27	Discuss the mechanisms of microbial inactivation by UV	10	CO2	
	radiation, HEPA filtration, desiccation, and incineration.			
Q 28	Describe the sources and types of bioaerosols and analyze their	10	CO1	
	health impacts in hospitals, pharmaceutical units, and food			
	industries.			