| N | ame: | |----|------| | т. | am. | Enrolment No: ## **UPES** ## **End Semester Examination, May 2025** Course: Sports Exercise and Nutrition Semester : VI Program: B.Sc. Food Nutrition and Dietetics Course Code: HSND3003P Max. Marks: 100 Instructions: Read all the questions carefully. | | Section A | | | |--------|--|-------|-----| | S. No. | Short answer questions/ MCQ/T&F | Marks | COs | | | (20Qx1.5M = 30 Marks) | | | | Q1 | The net energy production of ATP via glycolysis is | 1.5 | CO1 | | | a) 1 ADP | | | | | b) 2 ATP | | | | | c) 4 FADH | | | | | d) 2 GTP | | | | | e) none of the above | | | | Q2 | Ketogenic amino acids are primarily converted into which of the following | 1.5 | CO1 | | | during metabolism? | | | | | a) Glucose | | | | | b) Pyruvate | | | | | c) Ketone bodies or Acetyl-CoA | | | | Q3 | d) Citric acid cycle intermediates What is the primary function of the electron transport chain? | 1.5 | CO1 | | Ų3 | a) Conversion of glucose into pyruvate | 1.3 | COI | | | b) Production of ATP by transferring electrons from NADH and FADH ₂ | | | | | c) Breakdown of fatty acids | | | | | d) Conversion of pyruvate into lactate | | | | Q4 | List down three benefits of physical activity. | 1.5 | CO1 | | Q5 | Which of the following activities is most likely to have a MET value of 12 or | 1.5 | CO2 | | | higher? | | | | | a) Jogging at 5 mph | | | | | b) Cycling at a leisurely pace | | | | | c) Swimming laps at a fast pace | | | | | d) Walking uphill at a moderate pace | | | | Q6 | Which plan best balances aerobic capacity, strength, and flexibility for Sarah's | 1.5 | CO4 | | | marathon training? | | | | | a) Run 60 min (moderate), 4 days; resistance 30 min (high), 3 days; | | | | | stretch 10 min before/after runs. | | | | | b) Run 30 min (high), 5 days; resistance 45 min (moderate), 2 days; | | | | | stretch 20 min after runs. | | | | | c) Run 90 min (low), 3 days; resistance 60 min (moderate), 1 day; stretch | | | |-------------|--|-----|-----| | | 15 min, 1 day. d) Run 45 min (moderate), 5 days; resistance 30 min (moderate), 4 days; | | | | 07 | stretch 5 min before/after runs. | 1.7 | GOA | | Q7 | Which of the following best describes the Cori cycle in energy metabolism? a) The process by which glucose is synthesized from fatty acids in the liver. b) The conversion of lactate produced in muscles during anaerobic exercise to glucose in the liver. a) The breekdown of glucosen into glucose in the liver for energy. | 1.5 | CO2 | | | c) The breakdown of glycogen into glucose in the liver for energy production. | | | | 00 | d) The process of converting amino acids into glucose in the liver. | 1.7 | COA | | Q8 | During a 5-hour ultra-marathon in hot, humid weather, an athlete drinks large | 1.5 | CO2 | | | amounts of plain water but begins to feel dizzy, confused, and nauseous. What | | | | | is the most likely cause of these symptoms? | | | | | a) Dehydration due to inadequate fluid intake | | | | | b) Hyponatremia caused by excessive water intake and sodium loss | | | | | c) Heatstroke due to lack of cooling strategies | | | | | d) Hypoglycemia caused by insufficient carbohydrate intake | | | | Q 9 | What role do B vitamins play in energy metabolism? | 1.5 | CO2 | | Q10 | Write down the primary role of ATP and PCr for muscle activity. | 1.5 | CO2 | | Q11 | What is an ergogenic aid? | 1.5 | CO1 | | Q12 | What term is used to describe the increase in muscle size and strength because of repeated work? | 1.5 | CO2 | | | a) Atrophy b) Hypertrophy | | | | | c) Osteoporosis d) Muscular dystrophy | | | | Q13 | Which of the following is true regarding protein consumption and muscle mass | 1.5 | CO3 | | Q 10 | development? | 1.0 | | | | a) Consuming excessive protein will automatically increase muscle mass. | | | | | b) Protein supplements are the primary fuel source for weightlifting. | | | | | c) Consuming high carbohydrate, moderate protein foods after a workout | | | | | can enhance muscle protein synthesis. d) Strength training is not necessary for muscle growth if protein intake is | | | | | increased. | | | | Q14 | To express exercise intensity relative to individual fitness, it is best to use: | 1.5 | CO3 | | | a) Absolute treadmill speed | | | | | b) Percentage of body weight | | | | | c) Percentage of VO ₂ max | | | | | d) Resting heart rate | | | | Q15 | Which of the following best describes "hitting the wall" during endurance | 1.5 | CO3 | | | exercise? | | | | | a) Complete depletion of body fat stores | | | | | b) Exhaustion of glycogen stores, leading to reduced exercise capacity | | | | | c) Accumulation of lactic acid in the muscles | | | | | d) Onset of dehydration during prolonged exercise | | | | | Section C | | | |------------|---|-----|-----| | | marks) | | | | | b) How does iron deficiency anaemia affect athletic performance? (2.5 | | | | Q4 | a) What is Relative Energy Deficiency in Sport (REDS)? | 5 | CO3 | | | muscle recovery? (2.5 marks) | | | | | b) How does eating carbohydrates and protein after weight training help | | | | - | statement. (2.5 marks) | | | | Q3 | a) Consuming too much protein led to more muscle growth. Justify the | 5 | CO2 | | - | during exercise. | | | | Q2 | Explain how the functions and fuel sources of different muscle fiber types vary | 5 | CO2 | | | specificity and reversibility. (2.5 marks) | | | | | b) Discuss and provide examples of the exercise training principle of | | | | Κ 1 | marks) | 3 | | | Q1 | a) What is the difference between anaerobic and aerobic exercise? (2.5 | 5 | CO1 | | | (4Qx5M=20 Marks) | | | | | Section B | | | | | glycogen stores | | | | | c) Maintain regular training and focus on hydration onlyd) Taper training while consuming a high-carbohydrate diet to maximize | | | | | | | | | | a) Increase protein intake and perform high-intensity trainingb) Decrease carbohydrate intake to promote fat burning | | | | | prioritize in the 3 days leading up to the event? | | | | | hours. To optimize performance, which of the following strategies should she | | | | Q20 | An endurance cyclist has an upcoming 100 km race expected to last over 4 | 1.5 | CO4 | | | 1 0 | | | | Q19 | What is progressive overload principle? | 1.5 | CO2 | | | d) A combination of carbohydrates and fats | | | | | b) Fats c) Proteins | | | | | a) Carbohydratesb) Fats | | | | | energy source her body will rely on during this session? | | | | Q18 | Maria is hiking at a moderate intensity for half a day. What is the primary | 1.5 | CO4 | | 010 | e. glycolysis 5. electrons transferred back and forth to make ATP | 1 7 | 004 | | | d. gluconeogenesis 4. formation of excess ketone bodies | | | | | c. electron transport chain 3. synthesis of glucose from non-CHO sources | | | | | b. ketosis 2. breakdown of fat to 2-carbon units called acetyl-CoA | | | | | a. beta-oxidation 1. breakdown of glucose to pyruvate | | | | Q17 | Match the definitions on the right with the terms on the left. | 1.5 | CO4 | | | d) For hydration after a light workout | | | | | conditions | | | | | c) During prolonged exercise (over 60 minutes) in hot and humid | | | | | b) When exercising at low intensity in cool temperatures | | | | | over water? a) For hydration during short-duration exercise (less than 30 minutes) | | | | | | | | | | (2Qx15M=30 Marks) | | | |----|---|----|-----| | Q1 | a) State the predominant energy pathways that exist for different modes of physical activity. (3 marks) | 15 | CO3 | | | b) Discuss cardiac hypertrophy in trained athletes. (6 marks) | | | | | c) Discuss the pulmonary adaptations that occur with aerobic training. (6 marks) | | | | Q2 | a) Discuss the relationship between exercise intensity and blood lactate levels in both untrained individuals and endurance athletes. (7.5 marks) | 15 | CO3 | | | b) How do aerobic training adaptations alter the lactate threshold, and | | | | | what factors contribute to the improved lactate turnover in endurance | | | | | athletes? (7.5 marks) | | | | | Section D | | | | | (2Qx10M=20 Marks) | | | | Q1 | Illustrate the metabolic pathways involved in ATP production from fatty acids and amino acids during the process of gluconeogenesis. | 10 | CO1 | | Q2 | Melissa, a 45-year-old woman, has started a low carbohydrate, high-protein diet | 10 | CO4 | | | to lose weight. During the first 2 weeks of the diet, she is concerned about the | | | | | effects of ketosis and wonders how fasting, might influence her metabolism. | | | | | a) What are ketones, and how do ketosis support energy production during | | | | | prolonged fasting? (5 marks) | | | | | b) Explain the metabolic changes that occur in the body during the initial | | | | | phase of fasting (first 24-48 hours) and how the body shifts from | | | | | glucose to fat as its primary energy source. (5 marks) | | |