Name:	
Enrolment No:	WOI LS
	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Program:B. PharmSemester:IVCourse:Physical Pharmaceutics-IIDuration:03 Hours

Course Code: BP403T Max. Marks: 75

Instructions: Attempt all sections.

SECTION A

(20Q×1M=20 Marks)

Attempt all questions. Each question carries one mark.

S. No.	Attempt an questions. Each question earries one mark.	Marks	Cos
Q 1	The zig-zag motion of colloidal particles is explained by: a) Tyndall Effect b) Diffusion c) Electrophoresis d) Brownian Motion	1	CO1
Q 2	What is the purpose of a protective colloid? a) Decrease viscosity of the dispersion medium c) Prevent coagulation of lyophobic colloids d) Increase coagulation rate	1	CO1
Q 3	Surfactant solutions are termed as association colloids when their concentrations are: a) Less than the critical micelle concentration b) More than the critical micelle concentration c) Insufficient to saturate the bulk phase d) Insufficient to saturate the interface	1	CO1
Q 4	The composition of the electrical double layer includes: a) Stern and Gouy layers b) Compact and viscous layers c) Diffuse and sedimentation layers d) Hydrophobic and hydrophilic layers	1	CO1
Q 5	The supernatant liquid in a deflocculated suspension is: a) Clear b) Turbid c) Transparent d) Yellow	1	CO2
Q 6	The reduction of free surface energy in a suspension improves: a) Viscosity b) Sedimentation rate c) Stability of the suspension d) Reactivity of particles	1	CO2
Q 7	A sedimentation volume greater than 1 indicates: a) High particle aggregation b) Low particle settling c) High suspension stability d) The suspension is unstable	1	CO2
Q 8	According to Bancroft's rule, an emulsifier that is more soluble in water will form: a) Water-in-oil emulsion b) Oil-in-water emulsion c) Microemulsion d) Multiple emulsion	1	CO2
Q 9	Fluidity is a term associated with Newtonian fluids. An equivalent term for the flow of plastic fluids is: a) Plastic fluidity b)Mobility c) Flexibility d) Apparent fluidity	1	CO3
Q 10	The apparatus used for determining the viscosity of non-Newtonian fluids is: a) Ostwald viscometer b) Brookefield viscometer c) Falling sphere viscometer d) Capillary viscometer	1	CO3
Q 11	Pseudo-plastic flow is characterized by: a) Viscosity increasing with increasing shear rate. b) Viscosity decreasing with increasing shear rate. c) A constant viscosity at all shear rates. d) Flow behavior similar to plastic flow.	1	CO4
Q 12	What happens to the viscosity of a liquid with an increase in temperature? a) Increases b) Remains constant c) Decreases d) Doubles	1	CO3

0.12	The type of particle diameter obtained by microscopic method of evaluation is:	1	GO 4
Q 13	a) Surface-volume diameter b) Volume-surface diameter	1	CO4
	c) Projected diameter d) Stokes diameter		
0.14	Free flowing powders show a flatter cone with a:	1	GO 4
Q 14	a) Smaller angle of repose b) Larger angle of repose	1	CO4
	c) Intermediate angle of repose d) None of the above		
0.15	Porosity of a porous powder can be defined as:	1	GO 4
Q 15	a) Bulk volume/Void volume b) Void volume/Bulk volume	1	CO4
	c) True volume/Bulk volume d) Bulk volume/True volume		
0.16	The primary purpose of determining bulk density is:		GO 4
Q 16	a) To calculate particle flow b) To measure particle porosity	1	CO4
	c) To estimate packing behavior d) To determine surface area		
0.4=	The main objective of accelerated stability analysis is:		~~~
Q 17	a) To test drug compatibility with containers b) To evaluate microbial stability	1	CO5
	c) To predict shelf-life under normal storage conditions d) To reduce production costs		
	The equation used for predicting the shelf life of a drug product is:		
Q 18	a) Michaelis-Menten equation b) Arrhenius equation	1	CO5
	c) Hixon-Crowell equation d) Henderson-Hasselbalch equation		
	The role of a catalyst in chemical reactions involves:?		
Q 19	a) Changes the equilibrium b) Decreases activation energy	1	CO5
	c) Increases product yield d) Alters reaction stoichiometry		
	During the hydrolysis of sucrose in the presence of excess water, the following occurs:		
Q 20	a) First-order kinetics b) Second-order kinetics	1	CO5
	c) Pseudo-first-order kinetics d) Pseudo-zero-order kinetics		
	SECTION B (20 Marks)		
	(2Q×10M=20 Marks)		
	Attempt 2 Question out of 3.		
Q 1	Discuss the mechanism of electrical double layer formation around a colloidal particle.	10	CO1
	Explain electro-osmosis based on the concept of the electrical double layer. (7+3)		
	Explain the principle and working procedure of an Andreasen pipette for particle size		
Q 2	determination with the aid of a neat, labeled diagram. Also, compare its advantages and	10	CO4
	disadvantages to other techniques. (2+5+3)		
	Write short note on any two of the following: (5+5)		
Q 3	a) Flocculation and Creaming	10	CO3
Q -	b) Flocculated vs deflocculated suspension		
	c) Preservation of an emulsion		
	SECTION-C (35 Marks)		
	(7Q×5M=35 Marks)		
0.1	Attempt 7 Question out of 9.		
Q1	Briefly discuss the common methods used to improve the flow properties of powders.	5	CO4
Q 2	Explain the key features of the stress-strain curve and its significance in material analysis.	5	CO2
Q 3	Describe dilatant flow behavior of the materials with an example.	5	CO2
Q 4	With the help of a well labelled diagram explain working of Cone and Plate Viscometer.	5	CO2
Q 5	How does a colloidal system differ from a coarse system? Discuss the pharmaceutical	5	CO1
	applications of colloidal dispersions.		
Q 6	Describe the effect of ionic strength on reaction rates.	5	CO5
Q 7	Derive the expression for calculating the rate constant and half-life for a first-order reaction.	5	CO5
Q 8	How would you determine the order of a given reaction using the half-life method?	5	CO5
	Discuss the measures that are taken to preserve an emulsion from microbial contamination		
Q 9	and oxidation.	5	CO3