	am	Δ	•
Τ.	аш	·	

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Biophysics Program: B.Tech – Biotechnology & B.Tech - Biomedical

Course Code: PHYS2030

Semester: IVth Duration: 3 hours Max. Marks: 100

Instructions: Carefully read and attempt all the questions.

S. No.	Section .	A	Marks	COs
	Short answer questio (20Qx1.5M= 30			
Q1.	Recall the postulate of quantum theory	•	1.5	CO1
	A. Energy is continuous			
	B. Electrons follow circular orbits only			
	C. Energy is quantized and exchanged in	discrete units called quanta		
02	D. Atoms do not emit radiation	• • • • • • • • • • • • • • • • • • • •	1.5	COA
Q2.	Hydrogen bonding occurs when hydrogen		1.5	CO2
	A. Carbon, sulfur, or silicon	B. Oxygen, nitrogen, or fluorine		
02	C. Phosphorus, arsenic, or bromine	D. Any metal ion	1.5	CO2
Q3.	Electrostatic interactions are strongest A. The dielectric constant is high	when:	1.5	CO2
	B. The charges are far apart			
	C. The dielectric constant is low and char	rges are close		
	D. In aqueous environments	ges are crose		
Q4.	One of the unusual properties of water	ie•	1.5	CO1
ζ.,	A. Low surface tension	1.70		
	B. Maximum density at 0°C			
	C. High heat capacity and heat of vaporiz	ation		
	D. It behaves as a non-polar solvent			
Q5.	In an enzyme-catalyzed reaction, the ra	ate increases with substrate	1.5	CO2
	concentration until:			
	A. The enzyme is saturated			
	B. All substrate is converted to product			
	C. Temperature reaches 0°C			
	D. The reaction becomes zero-order			
Q6.	The enthalpy change (ΔH) of a reaction		1.5	CO2
	A. The amount of disorder in the system	B. The heat absorbed or released		
	C. Activation energy	D. The reaction rate		
Q7.	Recall the most abundant lipids in biological membranes.		1.5	CO1
	A. Sphingomyelin	B. Phosphatidylcholine		
00	C. Cholesterol	D. Cardiolipin	1.5	001
Q8.	Identify a secondary active transporter.		1.5	CO1
	A. Na ⁺ /K ⁺ -ATPase	B. Aquaporin		
	C. Glucose-Na ⁺ symporter	D. Voltage-gated K ⁺ channel		

Q9.	During an action potential, depolarization is caused by:	1.5	CO
	A. Cl ⁻ influx B. K ⁺ efflux		
	C. Na ⁺ influx D. Ca ²⁺ efflux		
Q10.	The patch clamp technique is used to measure:	1.5	CO
	A. Entire neuron activity B. Single ion channel currents		
	C. Metabolic rate D. Membrane elasticity		
Q11.	Recall the compounds used in Anfinsen's renaturation experiments?	1.5	CO
	A. SDS and ATP B. Urea and β-mercaptoethanol		
	C. Heat and ethanol D. Acetone and NaCl		
Q12.	Levinthal's paradox suggests:	1.5	CO
	A. Protein folding is a random and slow process		
	B. Proteins cannot fold spontaneously		
	C. Proteins fold via specific pathways, not by random search		
	D. All proteins fold the same way		
Q13.	The energy landscape theory of protein folding illustrates:	1.5	CC
	A. Folding requires enzymes		
	B. Proteins fold through a linear pathway		
	C. Proteins fold via multiple paths down an energy funnel		
	D. All folding happens in one step		
Q14.	A folding funnel represents:	1.5	CC
	A. Increase in entropy		
	B. Progressive decrease in free energy toward native state		
	C. Increase in protein size		
	D. Increase in temperature		
Q15.	Molecular chaperones assist protein folding by:	1.5	CO
	A. Directly folding proteins		
	B. Preventing aggregation and providing folding environment		
	C. Breaking misfolded structures		
016	D. Hydrolyzing misfolded proteins	1.5	C
Q16.	The delay between absorption and fluorescence emission is typically:	1.5	CC
	A. Microseconds B. Nanoseconds		
015	C. Seconds D. Hours		0.0
Q17.	UV absorbance at 280 nm is primarily due to:	1.5	CC
	A. Peptide bonds B. Aromatic amino acids B. G. M. H.		
010	C. Aliphatic residues D. Sulfur-containing residues	1.5	C
Q18.	The melting temperature (Tm) of a protein is defined as:	1.5	CC
	A. The temperature at which all proteins degrade		
	B. The temperature at which 50% of the protein is unfolded		
	C. The temperature at which proteins are phosphorylated		
010	D. The point of maximum absorbance	1 =	CC
Q19.	In ITC, the binding isotherm provides information about:	1.5	CC
	A. Molecular geometry		
	B. Stoichiometry, enthalpy, and binding constant C. Molecular diffusion		
020	D. pH dependence only	1.5	CC
Q20.	is not a limitation of ITC?	1.5	CC
	A. High sample consumption		
	B. No need for labeling		
	C. Low throughput D. Soppitivity to boot ortifoets		
	D. Sensitivity to heat artifacts		

	Section B (4Qx5M=20 Marks)		
Q1.	Explain the concept of secondary active transport, classify its types, and provide an example for each type.	5	CO3
Q2.	Discuss the role and significance of hydrogen bonding and van der Waals interactions in biological systems.	5	CO2
Q3.	Describe the patch clamp technique and summarize its importance in studying the properties of biological membranes.	5	CO
Q4.	Describe binding energy and analyze its contribution to enzyme catalysis.	5	CO
	Section C (2Qx15M=30 Marks)		1
Q1.	Design an experiment to evaluate the suitability of two different buffers in maintaining protein stability. (7) Describe the experimental method and its detailed steps. (8)	15	CO
Q2.	Explain the principle behind isothermal titration calorimetry (ITC). (5) Describe the working mechanism of ITC with the help of a labeled diagram. (10)	15	CO
	Section D		
Q1.	(2Qx10M=20 Marks) Identify the conditions necessary for conformational changes in proteins. (3) Explain how diphosphoglycerate (2,3-BPG) influences the binding affinity of oxygen to hemoglobin. (7)	10	CO
Q2.	Analyze how protein folding processes comply with the second law of thermodynamics. (4) Illustrate and explain the energy-entropy funnel model with a labeled diagram. (6)	10	CO