N	am	e

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Bioinformatics and Computational Biology Program: B.Tech Biotechnology / Biomedical

Course Code: HSBE2006

Semester: IV Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The main role of algorithms in computational biology is	1.5	CO1
	a) Replacing experimental data		
	b) Designing molecules		
	c) Analyzing and predicting biological behavior		
	d) Coding protein structures		
Q 2	The following is NOT a correct application of computational	1.5	CO1
	biology		
	a) Vaccine design		
	b) Weather prediction		
	c) Genome annotation		
	d) Protein structure prediction		
Q3	GenBank is maintained by:	1.5	CO1
	a) EMBL		
	b) NCBI		
	c) DDBJ		
	d) PDB		
Q 4	The Protein Data Bank (PDB) contains information on:	1.5	CO1
	a) DNA structures		
	b) RNA folding		
	c) 3D structure of biomolecules		
	d) Sequence motifs		
Q 5	Database types that you use to study protein-protein interaction is	1.5	CO1
	a) DDBJ		
	b) PDB		
	c) STRING		
	d) BLOSUM		
Q 6	Alignment method which is generally used before building a	1.5	CO2
	phylogenetic tree is		
	a) Local alignment		

	b) Dot plot		
	c) Multiple sequence alignment		
	d) Motif discovery		
Q 7	The algorithm that uses progressive alignment for MSA is	1.5	CO2
	a) Needleman-Wunsch		
	b) BLAST		
	c) ClustalW		
	d) FASTA		
Q 8	Scoring matrix which is used for aligning distantly related protein	1.5	CO2
	sequences is		
	a) PAM30		
	b) PAM250		
	c) BLOSUM80		
	d) BLOSUM100		
Q 9	Type of phylogenetic tree which assumes a constant rate of	1.5	CO2
	evolution is		
	a) Unrooted tree		
	b) Cladogram		
	c) Molecular clock tree		
	d) Neighbor-joining tree		
Q 10	The following is NOT a step in multiple sequence alignment	1.5	CO2
	a) Scoring		
	b) Pairwise alignment		
	c) Distance matrix generation		
	d) Ligand fitting		
Q 11	Homology modeling is based on the assumption that:	1.5	CO3
	a) All proteins are unique		
	b) Sequence similarity implies structure similarity		
	c) Protein folding is random		
	d) No tools are needed		
Q 12	Comparative modeling requires:	1.5	CO3
	a) Only the amino acid sequence		
	b) A template with known structure		
	c) A drug molecule		
	d) Genomic RNA		
Q 13	The purpose of Ramachandran plot is to:	1.5	CO3
	a) Predict DNA melting		
	b) Validate protein secondary structure		
	c) Visualize allowable dihedral angles in proteins		
	d) Align RNA molecules		
Q 14	AI-based structure prediction tools like AlphaFold improve:	1.5	CO3
	a) Docking scores		
	b) Visual rendering		
	c) Sequence homology		

d) 3D structure accuracy of proteins		
The prediction of alpha helices and beta sheets from sequence is called: a) Structure-based modeling b) Secondary structure prediction c) RNA folding d) Primary structure alignment	1.5	СОЗ
Name a pathway database.	1.5	CO4
Expand EMBL	1.5	CO4
Name a database for gene expression data.	1.5	CO4
Provide the principle for homology modeling.	1.5	CO4
What does a phylogenetic tree's "node" represent?	1.5	CO4
Section B (4Qx5M=20 Marks)		
List and describe any four applications of bioinformatics in health and agriculture.	5	CO1
Compare and contrast nucleic acid and protein sequence databases with suitable examples.	5	CO2
Discuss how pairwise and multiple sequence alignment helps in understanding evolutionary relationships.	5	CO3
Compare threading and ab initio approaches in 3D protein structure prediction.	5	CO4
Section C		'
Case Study: You are working with a research team investigating a multidrugresistant strain of <i>Pseudomonas aeruginosa</i> . During genome analysis, the team identifies a hypothetical protein (HPX_3214) that shows no significant homology to any known protein in standard databases. However, its expression level increases significantly under antibiotic stress, indicating a potential role in resistance. As a bioinformatics analyst, you are tasked with functionally annotating this hypothetical protein using multiple biological databases. Based on the case study, answer the following questions: Which primary and secondary sequence databases would you consult to gain insights into the hypothetical protein? (4 marks) Describe how domain prediction tools (like InterPro or Pfam) could assist in the functional annotation of HPX_3214. (4	15	CO3
	called: a) Structure-based modeling b) Secondary structure prediction c) RNA folding d) Primary structure alignment Name a pathway database. Expand EMBL Name a database for gene expression data. Provide the principle for homology modeling. What does a phylogenetic tree's "node" represent? Section B (4Qx5M=20 Marks) List and describe any four applications of bioinformatics in health and agriculture. Compare and contrast nucleic acid and protein sequence databases with suitable examples. Discuss how pairwise and multiple sequence alignment helps in understanding evolutionary relationships. Compare threading and ab initio approaches in 3D protein structure prediction. Section C (2Qx15M=30 Marks) Case Study: You are working with a research team investigating a multidrugresistant strain of Pseudomonas aeruginosa. During genome analysis, the team identifies a hypothetical protein (HPX_3214) that shows no significant homology to any known protein in standard databases. However, its expression level increases significantly under antibiotic stress, indicating a potential role in resistance. As a bioinformatics analyst, you are tasked with functionally annotating this hypothetical protein using multiple biological databases. Based on the case study, answer the following questions: 1. Which primary and secondary sequence databases would you consult to gain insights into the hypothetical protein? (4 marks) 2. Describe how domain prediction tools (like InterPro or Pfam)	The prediction of alpha helices and beta sheets from sequence is called: a) Structure-based modeling b) Secondary structure prediction c) RNA folding d) Primary structure alignment Name a pathway database. Expand EMBL Name a database for gene expression data. Provide the principle for homology modeling. What does a phylogenetic tree's "node" represent? List and describe any four applications of bioinformatics in health and agriculture. Compare and contrast nucleic acid and protein sequence databases with suitable examples. Discuss how pairwise and multiple sequence alignment helps in understanding evolutionary relationships. Compare threading and ab initio approaches in 3D protein structure prediction. Section C (2Qx15M=30 Marks) Case Study: You are working with a research team investigating a multidrugresistant strain of Pseudomonas aeruginosa. During genome analysis, the team identifies a hypothetical protein (HPX_3214) that shows no significant homology to any known protein in standard databases. However, its expression level increases significantly under antibiotic stress, indicating a potential role in resistance. As a bioinformatics analyst, you are tasked with functionally annotating this hypothetical protein using multiple biological databases. Based on the case study, answer the following questions: 1. Which primary and secondary sequence databases would you consult to gain insights into the hypothetical protein? (4 marks) 2. Describe how domain prediction tools (like InterPro or Pfam)

	3. Which databases or platforms would help you predict the 3D		
	structure of the protein, and how might that structure inform its		
	function? (4 marks)		
	4. Explain how a protein-protein interaction (PPI) database could		
	be used to infer the role of this protein in cellular pathways. (3		
	marks)		
Q 2	Case Study:	15	CO4
	During an outbreak of a new viral infection, a previously unknown		
	protein from the virus has been sequenced. Structural biologists		
	need your help to predict the 3D structure of this protein to		
	understand its function and interactions with human proteins.		
	Answer the following questions:		
	1. Explain the process of homology modeling and how it would be used in this case. (3 marks)		
	2. How would you visualize the predicted 3D structure, and what		
	tools would you use? (3 marks)		
	3. If no homologs are available, what alternative methods could		
	you employ? (3 marks)		
	4. Discuss how secondary structure prediction assists in full 3D		
	prediction. (3 marks)		
	5. What are the limitations of computational structure prediction		
	in this scenario? (3 marks)		
	Section D		
	(2Qx10M=20 Marks)		
Q 1	A) Differentiate between local and global alignment with	4+6	CO1
	examples.		
	B) Describe how dynamic programming is used in the Needleman-		
	Wunsch and Smith-Waterman algorithms.		
Q 2	A) Describe how φ (phi) and ψ (psi) angles influence protein	6+4	CO2
	folding. Discuss the allowed and disallowed regions, and how		
	the plot helps in validating predicted protein structures.		
	B) Describe the computational approaches for predicting 3D		
	protein structure. How are these protein structures validated		
	and refined.		