,		-				
	N	n	11	n	Δ	•

Enrolment No:

Semester: IV

UPES

End Semester Examination, May 2025

Course: Bionics & Microprocessor Program: B.Tech- Biomedical Engineering

Program: B.Tech-Biomedical Engineering Time: 03 hrs.
Course Code: ECEG 2058 Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A		COs	
	True & False			
	(20Qx1.5M=30 Marks)			
Q 1	The development of bionic organs focuses only on cosmetic appearance, not functional restoration.	1.5	1	
Q 2	Biological locomotion principles have no application in designing robotic movement strategies.	1.5 1		
Q 3	Advanced materials used in bioengineering are always made from synthetic, non-biodegradable sources.	om 1.5 1		
Q 4	warm robotics is inspired by the collective behavior observed in ological organisms like ants and bees.			
Q 5	Historical evolution of bionics shows that early bionic designs were heavily influenced by mechanical engineering rather than biological systems	1.5	1	
Q 6	Energy and powering issues are major challenges in creating efficient and long-lasting bionic devices.	1.5	1	
Q 7	Fabrication technologies at micro and nano scales are crucial for advancing bionics and bio robotics.	1.5	1	
Q 8	Bioinspired structural designs often lead to more lightweight and efficient materials in robotics.	1.5	1	
Q 9	Morphological computation relies on the idea that the physical structure of a robot can simplify its control processes.		1	
Q 10	Bionics has examples like robotic fish that mimic the swimming mechanisms of real fish.	1.5	1	
Q 11	Instrumentation amplifiers are commonly used in analog front-end circuits to amplify small sensor signals while minimizing noise.	1.5	2	
Q 12	Filters in an analog front-end are used to amplify the incoming signal rather than to remove unwanted frequencies.	1.5	2	
Q 13	ADC (Analog-to-Digital Converters) are responsible for converting digital signals into analog signals.	1.5	2	

Q 14	Digital interfaces are used to transfer digitized sensor data from the	1.5	2
	analog front-end directly to an embedded microcontroller.		
Q 15	Designing electronic systems for wearable applications must	1.5	2
	prioritize energy efficiency to ensure longer operational life.		
Q 16	Microcontrollers are generally more integrated and optimized for	1.5	3
	control tasks compared to microprocessors.		
Q 17	The 8051 microcontroller belongs to the MCS-51 family and	1.5	3
	features Harvard architecture.		
Q 18	In the 8051-instruction set, there is no support for indirect	1.5	3
0.10	addressing modes.	1.5	
Q 19	An ADC (Analog-to-Digital Converter) cannot be interfaced	1.5	3
O 20	directly with an 8051 microcontroller. All 8-bit microcontroller families have identical architecture and	1.5	3
Q 20	instruction sets.	1.5	3
	instruction sets.		
	Section B		
	(4Qx5M=20 Marks)		
	(Textor 20 Marks)		
Q 1	Summarize the concept of bionics and explain its major	5	1
	applications.		
	Explain the concept of bioinspired structural design and advanced	5	2
Q 2	materials with relevant examples.		
Q 3	What are the principles of morphological computation.	5	3
Q 4	Explain the role of microcontrollers and computers in bionics	5	4
	engineering and bio robotics, providing suitable examples.		
	Section C		
	(2Qx15M=30 Marks)		1
Q 1	Design a program to perform a cyclic right shift of LEDs on an 8051	15	3
	microcontroller and explain its functionality.		
Q 2	How would you interface a specific temperature sensor with a	15	4
	microcontroller in a real-world application? Include necessary		
	components.		
	Section D		
0.1	(2Qx10M=20 Marks)		
Q 1	How can different addressing modes be applied in programming the	10	3
0.0	8051 microcontrollers? Give examples.	40	
Q.2	Compare microprocessors and microcontrollers in terms of their	10	4
	components, functions, and typical uses.		