Name:	WUPES
Enrolment No:	UNIVERSITY OF TOMORROW

UPES

End Semester Examination, May 2025

Course: Immunology Semester : II
Program: M.Sc. Microbiology Duration : 3 Hours
Course Code: HSGN7012 Max. Marks: 100

Instructions: Read all questions carefully.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M = 30 Marks)		
Q 1	Most effective immune cells in antigen presentation to naïve T-	1.5	CO1
	cells:		
	A) Neutrophils		
	B) Dendritic Cells		
	C) Basophils		
	D) Eosinophils		
Q 2	Select the best statements explaining the difference between	1.5	CO1
	humoral and cell-mediated immunity:		
	A) Both are part of innate immunity		
	B) Humoral immunity involves cytotoxic T cells		
	C) Cell-mediated immunity directly targets intracellular		
	pathogens		
	D) Humoral immunity involves only macrophages		
Q 3	MHC Class II molecules primarily present antigens to:	1.5	CO2
	A) CD8+ T cells		
	B) NK cells		
	C) CD4+ T cells		
	D) B cells		
Q 4	Cell surface molecule is essential for T-cell receptor	1.5	CO1
	recognition of MHC-bound antigen:		
	A) CD28		
	B) CD3		
	C) CD40		
	D) CD19		
Q 5	Choose the correct pair in context to antigen-antibody	1.5	CO3
	interaction:		

	A) IgA – Placenta transfer		
	B) IgE – Mast cell activation		
	C) IgM – Secretory antibody		
	D) IgD – Complement activation		
Q 6	Hybridoma technology was developed to:	1.5	CO2
	A) Clone genes of B cells		
	B) Create vaccines		
	C) Produce monoclonal antibodies		
0.7	D) Map T-cell receptors	1.5	CO2
Q 7	Epitope mapping is essential for:	1.5	CO3
	A) Enhancing vaccine thermostability B) Predicting allorgic reactions		
	B) Predicting allergic reactions C) Identifying antigenic determinants		
	D) DNA sequencing		
Q 8	A child born without a thymus will lack which immune cells:	1.5	CO1
	A) B cells		
	B) Plasma cells		
	C) T cells		
	D) NK cells		
Q 9	CD8+ T-cells are best described as:	1.5	CO1
	A) Helper T-cells		
	B) Cytotoxic T lymphocytes		
	C) Regulatory T cells		
	D) Memory B cells		
Q 10	A primary immune response is characterized by:	1.5	CO2
	A) Predominance of IgG		
	B) Shorter lag phase		
	C) Higher affinity antibodies		
	D) Predominance of IgM		
Q 11	T-cell activation requires only TCR recognition of antigen.	1.5	CO3
	(True/False)		
Q 12	B cells require T-cell help for class switching. (True/False)	1.5	CO2
Q 13	NK cells directly kill MHC-expressing cells. (True/False)	1.5	CO1
Q 14	Immunological memory is a hallmark of innate immunity.	1.5	CO1
	(True/False)		
Q 15	TLR agonists mimic pathogen signals to activate innate	1.5	CO1
	immunity. (True/False)		
Q 16	MHC molecules determine transplant compatibility.	1.5	CO1
	(True/False)		
Q 17	Virosomes act as both antigen and delivery system.	1.5	CO2
	(True/False)		

Q 18	Hybridoma cells are immortal and produce specific	1.5	CO1
	antibodies. (True/False)		
Q 19	Plasma cells are activated T cells. (True/False)	1.5	CO2
Q 20	Vaccines containing only antigen without adjuvant are	1.5	CO3
	equally effective. (True/False)		
	Section B		
	(4Qx5M=20 Marks)		
	(Teacht—20 Marias)		
Q 21	Discuss the mechanism of action of adjuvants in vaccines	5	CO3
	and explain how they enhance immunogenicity.		
Q 22	Describe the steps and cellular interactions involved in the	5	CO2
	activation of a naïve T-helper (CD4+) cell.		
Q 23	Explain the structural and functional differences between	5	CO1
	MHC class I and class II molecules and their role in antigen		
	presentation.		
Q 24	Describe the structural components of an antibody molecule	5	CO1
	and explain how they contribute to antigen binding and		
	effector function.		
	Section C		1
	(2Qx15M=30 Marks)		
Q 25	Case study: A new recombinant vaccine for a viral disease	5+5+5	CO2
	includes a novel saponin-based adjuvant.		
	Questions:		
	Questions.		
	a) Explain the role of adjuvants included in vaccines,		
	and how do they work.		
	b) Discuss the type of immune responses enhanced by		
	saponin-based adjuvants.		
	c) Compare the benefits of saponin with alum as an adjuvant.		
	aujuvani.		
Q 26	Case study: A COVID-19 recovered individual tests positive	5+5+5	CO3
	for IgG antibodies but is asymptomatic.		
	Questions:		
	a) Explain the presence of IgG about the individual's		
	immune status.		
	b) Explain viral neutralization with antibodies help.		
	c) Can this individual be a candidate for convalescent		
	plasma therapy? Justify.		

	Section D		
	(2Qx10M=20 Marks)		
Q 27	Compare and contrast the innate and adaptive immune systems in terms of cells involved, mechanisms of action, and clinical significance.	10	CO2
Q 28	Discuss the role of antigen-antibody interactions in immunodiagnostic techniques. Provide examples such as ELISA, Western blotting, and flow cytometry.	10	CO3