Nam	١۵٠
13a11	10.

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Bioinstrumentation

Semester : 2nd

Program: MSc Microbiology

Duration : 3 Hours

Course Code: HSCC 7021 Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1	Define mobile phase in the context of HPLC.	1.5	CO3
Q2	The HPLC column pressure can achieve a value upto 5000	1.5	CO3
	psi. Is this statement true or false?		
Q3	The dispersion type of FTIR is more preferrable than the	1.5	CO2
	interferometric type. Is this statement true or false?		
Q4	The phenomenon responsible for imaging specimen via	1.5	CO1
	electron microscopy is:		
	a. Uncertainty principle		
	b. Dual nature of matter		
	c. de-Broglie theory		
	d. Both (b)and (c)		
Q5	The resolution of an optical microscope is given by:	1.5	CO1
	a. $(0.5\lambda)/n \sin\theta$		
	b. $\lambda / n \sin \theta$		
	c. $(1.5\lambda)/n \sin\theta$		
	d. None of the above		
Q6	Which of the following is true for UV-VIS and FTIR spectroscopy?	1.5	CO2

	a. both of them involve electronic transitionsb. both of them involve rotational transitions		
	c. UV-VIS involves vibrational transitions and FTIR		
	involves rotational transitions		
	d. UV-VIS involves electronic transitions and FTIR involves vibrational transitions		
Q7	Which contrast agent is widely used in fluorescence	1.5	CO1
	microscopy?		
Q8	A spectrophotometric detector cannot be used in a HPLC	1.5	CO3
	system. Is this statement true or false?		
Q9	Illustrate the resolution of optical microscope, SEM and	1.5	CO1
	TEM.		
Q10	The sharp peaks observed in XRD plot occurs due to high	1.5	CO2
	degree of X-ray diffraction from the crystal planes. Is this statement true or false?		
Q11	The atoms in flame photometry undergo electronic excitation	1.5	CO2
_	at the primary heating zone. Is this statement true or false?		
Q12	Which of the following best describes Bragg's law of	1.5	CO2
	diffraction:		
	(a) $\lambda = d \sin\theta$		
	(b) $\lambda = d \cos \theta$		
	$(c) n\lambda = d \sin\theta$		
	$(d) n\lambda = 2d \sin\theta$		
Q13	Apart from XRD, the d-spacing of crystals planes can be analyzed by TEM as well. Is this statement true or false?	1.5	CO1
Q14	In flame photometry, which phenomenon does the ultrasonic	1.5	CO2
015	nebulizer work on?	1.5	CO2
Q15	In UV-Vis spectroscopy, what is the wavelength range emitted by a hydrogen discharge lamp?	1.5	CO2
Q16	The flow range in a HPLC pump is $0.01 - 10$ mL/min. Is this	1.5	CO3
	statement true or false?		
Q17	The electrochemical detectors in HPLC can identify the	1.5	CO3
	presence of a species within pg-ng range. Is this statement		
	true or false?		

Q18	If Mo is magnification of objective lens and Me is the magnification of eyepiece, then the total magnification of an optical microscope is:	1.5	CO1
	(a) Mo + Me (b) Mo – Me (c) Mo x Me		
	(d) Mo/Me		
Q19	Mention one radiation source which can be used in FTIR spectroscopy.	1.5	CO2
Q20	A field emission electron gun is preferred for acquiring high resolution images in SEM.	1.5	CO1
	Section B (4Qx5M=20 Marks)		
	, - , , , , , , , , , , , , , , , , , ,		
Q 1	What do you mean by resolution? If the numerical apertures of two microscopes are 0.12 and 0.87, which of them will have higher resolution? Justify your answer.	5	CO1
Q2	a. Describe Beer-Lambert's law.	5	CO1
	b. A solution of tryptophan exhibits peak absorbance of 0.54 at 280 nm in a 0.5 cm length cuvette. What is the concentration of the solution if absorbance coefficient is 6.4 x 10 ³ L/Mol/cm?		
Q3	Discuss why FTIR spectroscopy is termed as one of the tools to study "molecular fingerprint"?	5	CO2
Q4	Explain why X-rays are suitable for probing the crystal structure of a particular sample.	5	CO2
	Section C (2Qx15M=30 Marks)		
Q 1	Examine how atomic absorption spectroscopy and flame photometry are different from each other for identifying the presence of trace metals in a sample.	15	CO2

Q2	(a) Explain how electrons can lead to the formation of	15	CO1
	microstructural image of a sample.		
	(b) Discuss the working principle of scanning electron microscope with the help of a suitable diagram.		
Section D			
	(2Qx10M=20 Marks)		
Q 1	Discuss the various allowed as well as forbidden transitions in UV-VIS spectroscopy.	10	CO2
Q2	Explain the functioning of a Mass Spectroscopy instrument.	10	CO3