	•	m	n	Δ	•
1.4	a	ш	ш	C	٠

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Virology Semester : II

Program: MSc. Microbiology Duration : 3 hours Course Code: HSMB7004 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	What is the correct order of the viral infectious cycle?	1.5	CO2
	a. Entry \rightarrow Uncoating \rightarrow Replication \rightarrow Release		
	b. Uncoating \rightarrow Entry \rightarrow Release \rightarrow Replication		
	c. Entry \rightarrow Replication \rightarrow Uncoating \rightarrow Release		
	d. Replication \rightarrow Entry \rightarrow Uncoating \rightarrow Release		
Q 2	The concept of metastability in viruses refers to:	1.5	CO2
	a. Stability of host cells		
	b. Temperature resistance of the virus		
	c. Stable yet primed to undergo conformational change		
0.0	d. Ability to avoid immune system detection	4.5	000
Q 3	Which of the following viruses contains gapped DNA genomes?	1.5	CO2
	a. Herpesvirus b. Retrovirus		
	c. Hepatitis B virus d. Rotavirus		
0.4		1.5	CO1
Q 4	Icosahedral symmetry in viruses is best described by:	1.5	CO1
	a. Helical coils forming a shell		
	b. A 20-sided polygon with equilateral triangles		
	c. Spherical structure made of hexagons		
	d. Random protein arrangements		
Q 5	Which tool is primarily used for studying viral structures?	1.5	CO1
	a. ELISA		
	b. RT-PCR		
	c. Cryo-Electron Microscopy		
0.6	d. Gram staining	1.5	CO1
Q 6	Which genome type is typical for influenza virus? a. ssDNA	1.5	COI
	b. dsRNA		
	c. (+)ssRNA d. (-)ssRNA		
Q 7	The function of reverse transcriptase is:	1.5	CO2
Ų /	a. To replicate RNA strands	1.5	CO2
	b. To convert RNA into DNA		

	c. To splice viral genes		
	d. To synthesize proteins		
Q 8	A viral receptor is:	1.5	CO2
V	a. Host's immune cell		002
	b. Viral entry protein		
	c. Host surface molecule that virus binds		
	d. Enzyme used for replication		
Q 9	Triangulation number is related to:	1.5	CO2
Q)	a. Viral genome size	1.5	CO2
	b. Helical virus entry		
	c. Surface area of viral envelope		
	d. Arrangement of subunits in icosahedral virus		
Q 10	Which RNA virus has a DNA intermediate?	1.5	CO1
C - *	a) Poliovirus		
	b) HIV		
	c) Influenza		
	d) Adenovirus		
Q11	Koch's postulates are used to:	1.5	
	a) Identify bacterial morphology		
	b) Classify viruses		
	c) Prove causality between pathogen and disease		
	d) Culture viruses in lab		
Q12	In retroviruses, DNA synthesis is initiated by:	1.5	CO2
	a) RNA polymerase		
	b) DNA ligase		
	c) Reverse transcriptase		
	d) Integrase		
Q13	The genome of SARS-CoV-2 is:	1.5	CO2
	a) ssRNA (+) sense		
	b) ssRNA (-) sense		
	c) dsRNA		
	d) dsDNA		004
Q14	The key feature of ambisense RNA is:	1.5	CO2
	a) No coding regions		
	b) Contains both (+) and (-) sense regions		
	c) Double-stranded structure		
715	d) Replicates in nucleus only	1.5	CO1
Q15	Which enzyme is required for RNA-directed RNA synthesis?	1.5	CO1
	a) RNA polymeraseb) DNA polymerase		
	c) Integrase		
	d) Protease		
Q16	What does "quasi-equivalence" refer to in virus structure?	1.5	CO1
ζ10	a) Irregular shell formation	1.3	
	b) Genetic drift in populations		
	c) Similar but not identical bonding in capsomers		
	d) RNA folding patterns		
Q17	Which of these is a feature of DNA virus replication?	1.5	CO1
χ-'	a) Random priming	1.0	
	b) RNA splicing		
	c) Use of viral or host DNA polymerase		
	d) Use of reverse transcriptase		
Q18	Virus coded transcriptional regulators function to:	1.5	CO1
	a) Translate viral proteins		

	1) D 11 (DNA		
	b) Degrade host mRNA		
	c) Promote viral gene expressiond) Suppress immune signaling		
Q19	Packaging of segmented genomes requires:	1.5	CO1
QI	a) Ribosomes	1.5	COI
	b) Packaging signals		
	c) Capsid proteins only		
	d) Envelope proteins		
Q20	Quasi-species concept highlights:	1.5	CO2
	a) Virus taxonomy		
	b) Viral replication fidelity		
	c) Population of mutants within a virus population		
	d) Viral envelope stability Section B		
	Section B (4Qx5M=20 Marks)		
Q1	Explain the concept of quasi-equivalence and triangulation number	5	CO2
	in virus structure.		
Q 2	Differentiate between (+) sense RNA viruses and (-) sense RNA	5	CO1
	viruses (life cycle) with suitable examples.		
Q 3	Outline the sequential and concerted strategies of virus assembly	5	CO2
	with suitable examples.		
Q 4	Describe cytopathic effects and where are they observed in	5	CO1
	virology. Cite examples.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	'A drug has selectivity index of 1 and the other has of 0.5.'	15	CO2
	Based on this answer the following:		
	1. Define 'Selectivity index' of an anti-viral drug. (2)		
	• • • • • • • • • • • • • • • • • • • •		
	2. Discuss which of the two is a better antiviral drug as per		
	the indices in question? Reason why (3)		
	3. Define nucleoside analogues. (2)		
	4. Name two nucleoside analogues and cite their mode of		
	action and target viruses. (4)		
	5. Classify and enlist two different kinds of Reverse		
	transcriptase inhibitors. Where are they used? (4)		
Q 2	A patient diagnosed with a chronic viral infection which resulted	15	CO2
	in sever immune suppression was started on an antiviral drug		
	targeting reverse transcriptase. Initially, the patient responded		
	well, but after 6 months, viral load increased despite adherence to		
	the treatment. Further analysis revealed mutations in the viral		
	genome, especially in the reverse transcriptase gene.		
	a. Identify the most probable virus involved. (1)		
	b. Identify the Baltimore class it belongs to. (1)		
	c. Explain the structure, genome and life cycle of this virus.		
	(5)		
	d. Analyse how resistance may develop in this case. (2)		
	e. Describe the concept of quasi-species and its role in		
	antiviral drug resistance. (2)		

	f. Propose an alternative approach for managing this patient's infection and which is routinely followed in patient management. (4)		
	Section D		I
	(2Qx10M=20 Marks)		
Q 1	 a) Describe Baltimore classification. (8) b) Write the central molecule around which this classification is based. (1) c) Is there any other way of classifying viruses/any other scheme that you are aware of. (1) 	10	CO1
Q 2	Outline the steps in replication of a virus. One can use a type centric or general life cycle approach to answer this.	10	CO1