Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Mathematics II Semester : II

Program: B.Tech. (Biotech./ BioMed./Food Tech.) Duration: 3 Hours Course Code: MATH1061 Max. Marks: 100

Instructions: Scientific Calculator is Permitted

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Find the order and degree of the following differential equation.	1.5	CO1
	$\frac{d^3y}{dx^3} - x \left(\frac{dy}{dx}\right)^4 = 0$		
Q 2	Find the solution of differential equation $y' - 2y = 0$ by roots	1.5	CO1
	method.		
Q 3	Obtain the auxiliary equation for the second order differential	1.5	CO1
	equation $y'' - 2y - 1 = 0$		
Q 4	Show that $y = x^2 + c$ is the solution for the differential equation	1.5	CO1
	y'=2x		
Q 5	Explain briefly about double integration.	1.5	CO1
Q 6	Give an example of differential equation which is of order 2 and	1.5	CO1
	degree 3.		
Q 7	Discuss briefly about any one application of complex number	1.5	CO2
Q 8	Discuss briefly about any one application of differential equation	1.5	CO2
Q 9	Obtain the roots of equation $x^2 + 1 = 0$. Comment whether they are real or imaginary.	1.5	CO2
Q 10	What is the value of i^3 ?	1.5	CO2
Q 11	Describe Euler's Equation for complex numbers.	1.5	CO2
Q 12	The integrating factor for the differential equation $y' + y = x$ is	1.5	CO2
-	given by		
Q 13	The integrating factor for the differential equation $y' + 2xy = x$ is given by	1.5	CO2

0.44			G04
Q 14	Polar form of complex number is given as	1.5	CO2
Q 15	Define Modulus and Argument of a complex number.	1.5	CO1
Q 16	Describe briefly why Cauchy-Rieman equations are used.	1.5	CO3
Q 17	Solve $\int_0^1 (1+i) dt$	1.5	CO3
Q 18	Solve $\int_0^1 it \ dt$	1.5	CO4
Q 19	Solve $e^{i\pi/2}$ using Euler's Equation	1.5	CO4
Q 20	Solve $e^{i\pi}$ using Euler's Equation.	1.5	CO4
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Obtain the auxiliary equation for the differential equation y'' +	5	CO1
	2y' - 1 = 0. Obtain the roots of auxiliary equation as well.		
Q 2	If $4x + i(3x - y) = 3 + i$ (- 6), where x and y are real numbers,	5	CO2
	then find the values of x and y .		
Q 3	Express each of the complex numbers given in the form $a + ib$.	5	CO3
	$i^9 + i^{19}$		
	$ii) \qquad (5i)\left(-\frac{3}{5}i\right)$		
Q 4	Solve the following differential equation by Variable Separable	5	CO4
	method. $\frac{dy}{dx} = xy$		
	ax		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Solve the following Case Study:	15	CO3
	Let $C(x, y)$ mg/cm ² represents the drug concentration at any point (x, y) on a tissue.		
	Calculate the total drug usage D present in the tissue using double		
	integration if $C(x, y) = 5 - x - y$ is the drug concentration for		
	the rectangular region $0 \le x \le 1$ cm and $0 \le y \le 2$ cm.		
Q 2	In food safety, Newton's Law of Cooling models how food	15	CO4
	cools over time. It states that the rate of temperature change is		
	proportional to the difference between the food temperature		
	and ambient temperature by the differential equation		
	dT		
	$\frac{dT}{dt} = -K(T - T_{room})$		
	where:		
	T(t)= food temperature		
	T_{room} =25 degrees Celsius		
	K=0.1 per minute = cooling rate		

	Initial condition: T(0) = 90 degrees Celsius Problem Statement: A freshly cooked meal at 90°C is placed in a room at 25°C. Solve for T(t) Determine the temperature after 20 minutes.					
	Section D					
Q1	Check Differentiability for the following complex valued functions through Cauchy-Rieman equations i) $f(z) = x^2 + iy^2$ (2.5) ii) $f(z) = e^{x+iy}$ (2.5) Evaluate the following integrals for following complex valued functions. iii) $\int_0^1 (1+it)^2$ (2.5) iv) $\int_0^1 \frac{i}{t} dt$ (2.5)	10	CO1			
Q 2	Solve the linear differential equation using integrating factor method. Find both the general and the particular solution. $x\frac{dy}{dx} - 2y = x^2; y(1) = 2$	10	CO2			