Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Engineering Thermodynamics

Semester : 2nd

Program: B.Tech Biomedical Engineering/Biotechnology/Food Technology

Duration: 3 Hours

Course Code: MECH1013 Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
Q1	The purpose of catalysts is to reduce the activation energy of for product formation. Is this statement true or false?	1.5	CO4
Q2	Define homogeneous catalysis.	1.5	CO4
Q3	The fugacity is equal to the pressure in case of ideal gases. Is this statement true or false?	1.5	CO2
Q4	Which of the following is true for molecularity and order of a reaction?	1.5	CO3
	a. molecularity and order of a reaction can be fractional values		
	b. molecularity and order of a reaction are both related to collisions among molecules		
	c. molecularity and order of a reaction can both be zero d. molecularity and order of a reaction can both have a value of one		
Q5	Molecularity of a complex reaction is always governed by the slow reaction. Is this statement true or false?	1.5	CO3
Q6	Define a thermodynamic system and surrounding.	1.5	CO1

Q7	All spontaneous thermodynamic processes are characterized by negative Gibb's free energy. Is this statement true or false?	1.5	CO1
Q8	Increasing the reactant surface area results in an increase in the rate of reaction. Is this statement true or false?	1.5	CO3
Q9	Collision theory of chemical reaction is based on classical hard sphere model. Is this statement true or false?	1.5	CO3
Q10	Catalysts increase the rate of reaction without taking part in the reaction. Is this statement true or false?	1.5	CO4
Q11	Refrigeration process works on the principle of heat engine. Is this statement true or false?	1.5	CO1
Q12	Proteins are not responsible for providing structural integrity to cell membrane. Is this statement true or false?	1.5	CO2
Q13	Give the mathematical relationship highlighting Fick's second law of diffusion.	1.5	CO2
Q14	The sodium-glucose transporter is an antiport. Is this statement true or false?	1.5	CO2
Q15	Secondary active transport require energy from electrochemical gradient. Is this statement true or false?	1.5	CO2
Q16	A successful chemical reaction is determined by the orientation of reactants. Is this statement true or false?	1.5	CO3
Q17	Biochemical reactions can be accurately described by the classical theory. Is this statement true or false?	1.5	CO3
Q18	On which principle is the 1 st law of thermodynamics based?	1.5	CO1
Q19	Passive transport occurs against the concentration gradient. Is this statement true or false?	1.5	CO2
Q20	Isochoric processes are characterized by a constant pressure. Is this statement true or false?	1.5	CO1
	Section B (4Qx5M=20 Marks)		
Q 1	Explain the various gas laws and derive an expression of the ideal gas behavior.	5	CO1
Q2	Discuss why transition state theory is more efficient than collision theory for explaining reaction kinetics.	5	CO3

Q3	Describe homogeneous and heterogeneous catalysis with suitable examples.	5	CO4
Q4	 (a) What is the change in internal energy of 5 moles of monoatomic Ar_(g) if its temperature is increased by 40°C? (b) If the gas is heated to 200 J, how much work is being done on the system? If temperature now increases to 70°C, what is the entropy of the system? 	2.5+2.5=5	CO1
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Discuss how the human body obeys all the laws of thermodynamics.	15	CO1
Q2	 (a) Define fugacity. Estimate the fugacity coefficient if N₂ gas exhibits fugacity of 97.03 atm at temperature and pressure of 0°C and 100 atm respectively. (b) Estimate the Gibb's free energy change involved during the active transport of Na⁺ ions across the cell membrane, provided the outside and inside concentrations are 150 mM and 10 mM respectively. Assume the membrane potential to be 60 mV. 	5+10=15	CO2
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Discuss the various types of passive transport involved in biological membranes. Describe the governing mechanism of passive transport.	10	CO2
Q2	For the reaction 2NO(g) + O ₂ (g) → 2NO ₂ (g), calculate the following: 1. Express the rate of reaction in terms of the reactants and product using both mass action law and differential forms. 2. At a particular instant if [NO] is decreasing at 0.5 mol/L/s, what is the rate of formation of NO ₂ at that instant?	5+5=10	CO3