Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2025

Course: Energy Storage and EV Management.

Program: MBA Power Management

Course Code: PIPM8011P_3

Semester: II Time: 03 hrs.

Max. Marks: 100

Instructions:

SECTION A

10Qx2M=20Marks (Answer All Question)

S. No.		Marks	СО
Q 1	What is the typical round-trip efficiency of a pumped hydro storage system?		
	A) 30–40%		004
	B) 50–60%	2	CO1
	C) 70–85%		
	D) 90–95%		
Q 2	Which challenge in renewable energy generation is most effectively addressed by BESS?		CO1
	A) Grid inertia	_	
	B) Seasonal variability	2	
	C) Intermittency and fluctuation		
	D) Transmission losses		
Q 3	Which challenge in renewable energy generation is most effectively		CO1
_	addressed by BESS?		
	A) Grid inertia	2	
	B) Seasonal variability	2	
	C) Intermittency and fluctuation		
	D) Transmission losses		
Q 4	What type of BESS application helps in frequency regulation of the		CO1
	grid?		
	A) Time-shifting	2	
	B) Peak shaving	2	
	C) Ancillary services		
	D) Load forecasting		
Q 5	What is the key metric to evaluate the economic benefit of BESS in a		CO1
	renewable system?		
	A) Total Harmonic Distortion		
	B) Levelized Cost of Energy Storage (LCOS)	2	
	C) Radiation Index		
	D) Apparent Power		

Q 6	How does BESS contribute to grid decarbonization?		CO1
	A) By replacing all fossil-fueled generators		
	B) By reducing the need for spinning reserves	2	
	C) By providing fuel to power plants		
	D) By increasing coal consumption during night		
Q 7	What is the common impact of not integrating BESS with variable	2	CO1
	renewable sources like wind and solar?		
	A) Stable voltage		
	B) High system efficiency		
	C) Grid congestion and curtailment		
	D) Increased grid frequency		
Q 8	Which Indian policy promotes electric vehicle adoption and	2	CO1
	infrastructure?		
	A) FAME		
	B) UDAY		
	C) R-APDRP		
	D) PM-KUSUM		
Q 9	What is the typical function of a Battery Management System (BMS)	2	CO1
-	in EVs?		
	A) Charging station locator		
	B) GPS tracking		
	C) Monitoring battery health and safety		
	D) Emissions monitoring		
Q 10	In a shared EV fleet, which of the following is most important for	2	CO1
	efficient management?		
	A) Number of cup holders		
	B) Driver's height		
	C) Scheduling and route optimization		
	D) Engine displacement		
	SECTION B		
	4Qx5M= 20 Marks		
Q 1	Capital Subsidy vs Soft Loan which option seems to be more fruitful to		
	assure long term sustainability and operation of a renewable energy	5	CO2
	project and why?		
Q 2	Why do EVs show faster breakeven points in urban driving conditions	_	COA
	compared to highways?	5	CO2
Q 3	What are the challenges may arrive due to increase share of renewable		
`	energy in the overall electricity mix of the country. What could be the	5	CO2
	potential solutions to address these challenges?		
Q 4	Define, Cycle efficiency, Cyle life, Energy Density, and Depth of	-	CO2
`	Discharge (DoD) of BESS system	5	CO2

	SECTION-C		
	(Attempt any three)		
Q 1	A 10 MWh BESS system has capital cost of Rs 1 crore per MW. Annual O&M cost is 3% of Capital cost. Estimate the unit cost of electricity generation (Rs/kWh) for the first year of operation. Consider discount rate (d) 10% Life of the project 15 years	10	CO3
Q 2	A C&I customer planning to procure green energy from BESS through open access during peak demand time, what are the charges consumer has to pay (define each one)	10	CO3
Q 3	Describe Energy Storage policy and Goals of Govt of India. What are the challenges in present scenario even after such policy provisions	10	
Q 4	An electric vehicle (EV) has a 50-kWh battery and is being charged using a 7-kW charger. The battery is at 30% state of charge (SoC) and needs to be charged up to 70%. Calculate the charging time required to bring the battery from 20% to 80% SoC. Consider charging efficiency 95%	10	
	SECTION-D		•
	(Attempt any 2) 2Qx15M= 30 Marks		
	2Qx15W= 30 Warks		CO4
Q1	As per the policy advisory of the Government of India, upcoming solar energy project bids will require the integration of a Battery Energy Storage System (BESS) with a capacity of 10% of the allocated solar capacity, capable of storing energy for 2 hours. For a 100 MWp solar plant allocation, determine the following: 1. BESS Specifications: Energy Storage Capacity (MWh) Power Capacity (MW) Consider 2. BESS Performance Parameters: Charging & Discharging Efficiency: 95% Depth of Discharge (DoD): 90% Initial BESS Cost: ₹10,000 per kWh Capital Subsidy: 40% BESS Life: 25 years Solar Plant Life: 25 years Estimate Solar PV capacity requires to charge BESS the BESS	15	CO4
Q 2	Assume Sunshine Hours: 7 hours/day Capital Cost of Solar PV for Charging BESS: ₹3 Crore per MW Estimate Unit cost of Energy Storage (LCOS) for first year of operation of the BESS Consider discount rate (d) 9% (May take other required values from Q1)		

Q 3	Estimate Net Revenue for first year operation of the (Solar+BESS system) if energy is sold at Rs 10 per kWh ((May take input values from Q1 or Q2) Consider discount rate (d) 9%		
	$LCOE = rac{ ext{Total Annual Cost}}{ ext{Annual Energy Delivered}}$		
	$ACC = ext{Total Capital Cost} imes CRF$	15	CO4
	$CRF = rac{d(1+d)^n}{(1+d)^n-1}$		