Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Time Series and Forecasting Methods

Program: B.Sc. (Hons.) Mathematics

Course Code: MATH 3037P

Semester: VI Time: 03 hrs.

Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

S. No.							Marks	CO
Q 1	Calculate the difference between four-year and three-year moving average forecast for 2025							602
	Year	2020	2021	2022	2023	2024	4	CO3
	Demand	55	60	58	65	72		
Q 2	Find the sem	Find the semi average for the following data:						
			Year	Production	ı			
			1981	132				
			1982	135				
			1983	141				
			1984	144			4	CO1
			1985	136				
			1986	138				
			1987	117				
			1988	144				
			1989	151				
			1990	140				
Q 3	Show that difference of two independent Poisson processes is not a Poisson process.						4	CO2
Q 4	The joint pdf		s given by					
	$f_{XY}(x,y) = \begin{cases} ke^{-(x+2y)} & x > 0, y > 0\\ 0 & \text{Otherwise} \end{cases}$ where k is a constant. Find $P(X > 1, Y < 1)$, $P(X < Y)$ and $P(X \le 2)$.						4	CO4
Q 5	Discuss the difference between AR process and IMA process.					4	CO3	

					CTION B M= 40 Ma				
Q 6	Define power spectral density function. Also show that the power spectral density function is an even function.							10	CO1
Q 7	Consider a random process $X(t)$ defined by $X(t) = Y coswt$ $t \ge 0$ where w is a constant and Y is a uniform random variable over $(0,1)$. i) Describe $X(t)$. ii) Sketch a few typical sample functions of $X(t)$. iii) Find $E[X(t)]$.							10	CO2
Q 8	Consider the ARMA (1, 2) process defined by the equation $X_t = 0.5 X_{t-1} + Z_t - 0.3 Z_{t-1} + 1.2 Z_{t-2}, \{Z_t\} \sim WN(0, \sigma^2).$ Test the causality and invertibility of the process.							10	CO2
Q 9	averages assumed average average averages assumed averages assumed averages assumed average aver	Productio n(in tons) 21 22 23 25 24 22 Year 1993 1994 1995 1996 1997 1998 Productio 25 26 27 26 23 26					10	CO3	
					CTION-C M=40 Ma				
Q 10	 Let Z₁, Z₂, be independent identically distributed random variables with P(Zn = 1) = p and P(Zn = -1) = q = 1 - p for all n. Let Xn = ∑i=1 Zi, n = 1, 2, and X0 = 0. a) Find the probability that Xn = -2 after four steps. b) Verify the result of part (a) by enumerating all possible sample sequences that lead to the value Xn = -2 after four steps. 						20	CO1	
Q 11	The following table gives the sales figures for a hundred units of a product.							20	CO4

	Quarters							
Year	I	II	III	IV				
2012	15	20	18	17				
2013	17	26	25	72				
2014	20	29	27	24				
2015	27	38	34	31				
2016	40	46	43	41				

Use the least square method to form equation and compute the demand for the product for the quarter wise using ratio to trend method.

OR

The following data give the average quarterly prices of a commodity for five years. Calculate seasonal indices by the method of link relatives.

V/On-to-	Quaterly output for 5 years					
Year/Quaters	I	II	III	IV		
2011	30	26	22	31		
2012	35	28	22	36		
2013	31	29	28	32		
2014	31	31	25	35		
2015	34	36	26	33		