Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Mathematical Methods Semester: VI
Program: B.Sc. Mathematics Time : 03 hrs.
Course Code: MATH3033 Max. Marks: 100

Instructions: 1. This question paper contains 11 questions.

- 2. Attempt all questions from Section A (each carrying 4 marks).
- 3. Attempt all questions from Section B (each carrying 10 marks). Question 9 has an internal choice.
- 4. Attempt all questions from Section C (each carrying 20 marks). Question 11 has an internal choice.
- 5. Calculator is allowed.

SECTION A (5Qx4M=20Marks)

S. No.						Marks	СО
Q 1	Derive the Laplace transform of the function, $f(t) = t$.				4	CO1	
Q 2	Write the Second Shifting Theorem for Laplace transform and find the Laplace transform of $f(t) = \begin{cases} t, & 0 \le t < 2 \\ t+1, & t \ge 2 \end{cases}$.					the 4	CO1
Q 3	Compute two ite Regula-Falsi meth				7 = 0 using	the 4	CO2
Q 4	Write the Newton's forward interpolation formula for a function $y = f(x)$, if it takes the values y_0, y_1, y_2 corresponding to $x = x_0, x_1, x_2$.						CO3
Q 5	Given						
	X	5	10	15	20		
	у	-12	3	10	16	4	CO3
	Show that $\Delta^2 y_1 = \nabla^2 y_3$.						
			SE	CTION B		I	
			(4Qx10I	M= 40 Maı	rks)		
Q 6	Find the value $x \in [10,15]$ with		sing Besse	el's interpo	olation formula	10	CO3

Q 7	Solve the following system using two iterations of the Gauss-Siedel method.						
	4x - y + z = 4	10	CO2				
	x + y - 5z = 7						
	2x + 6y + z = -1						
Q 8	A curve passes through the points $(0, 18)$, $(1, 10)$, $(2, -18)$ and $(3, 90)$. Find the slope of the curve at $x = 3$.	10	CO4				
Q 9	Solve the following differential equation using Laplace transform: $y'' = e^t$, $y(0) = 1$, $y'(0) = 0$.						
	OR	10	CO1				
	Compute $L^{-1}\left(\frac{1}{(s-2)(s+1)^2}\right)$.						
SECTION-C							
(2Qx20M=40 Marks)							
Q 10	Evaluate $\int_0^6 \frac{1}{5+3x} dx$ using a) Simpson's $1/3^{rd}$ rule b) Simpson's $3/8^{th}$ rule	20	CO4				
	by taking n=6. Also, compare these values with the actual value of the integral.						
Q 11	Find the Fourier sine transform of $f(x) = e^{-x}$ and hence show that						
	$\int_0^\infty \frac{\alpha \sin \alpha x}{1+\alpha^2} d\alpha = e^{-x} \frac{\pi}{2}.$						
	OR	20	CO1				
	Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$						