• •	
N.	ame:
1.4	ame.

Enrolment No:

UPES End Semester Examination, May 2025

Course: Economic Geology
Program: B.Sc. (Hons.) Geology
Time : 03 hrs.
Course Code: PEGS3049
Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)

S. No.				Marks	CO
Q.1	Identify four primary reasons that underscore the importance of studying economic geology.			[4M]	CO1
Q,2	Outline the characteristic features and mode of formation of stratiform ore deposits, along with suitable examples.		[4M]	CO1	
Q.3	Match the following:				
	Metal	Ore Mineral]		
	1. Copper	1.Bauxite	1		
	2. Nickel	2.Cassiterite]		
	3. Lead	3.Smithsonite			
	4. Zinc	4.Pentlandite		[4M]	CO1
	5. Manganese	5.Rutile			
	6. Aluminum	6.Galena			
	7. Titanium	7.Psilomelane			
	8. Tin	8. Chalcocite	ite		
Q.4	Explain the process of formation of contact metasomatic deposits with			[4 M]	
	examples.				CO2
Q.5	Apply the principles of the UNFC system to assign the correct code to a				
	limestone deposit cha	racterized by prove	en reserves, economic viability,	Co	CO3
	ongoing production, a	and a high-confiden	nce feasibility study.		
		SE	ECTION B		
		(4Qx10	0M= 40 Marks)		

Q.6	Define Metallogenic Epoch. Describe the significance of the Precambrian Metallogenic Epoch in India highlighting some important mineral deposits of India of this epoch.	[2+8= 10M]	CO1
Q.7	Distinguish between magmatic dissemination deposits and magmatic segregation deposits in terms of their genesis, textural characteristics, mineral associations, and economic significance. Support your answer with suitable geological examples.	[5+5=10 M]	
	OR,		CO2
	Explain the process of sublimation and Evaporation in ore deposits and illustrate your answer with suitable examples of economically important ore deposits formed by this process.	[5+5=10 M]	
Q. 8	A processing plant receives 80,000 tonnes of ore with an average grade of 5% Ni. The plant has a recovery rate of 75%. Compute the final yield (in tonnes) of nickel from this operation.		CO3
Q.9	Demonstrate how structural and geobotanical guides can be effectively applied in mineral exploration. Support your answer with examples showing their relevance in identifying potential ore-bearing zones.	[10M]	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q.10	Examine the geological setting, mode of occurrence, and genesis of bauxite deposits in India illustrating the major manganese-producing regions and infer the economic significance of these deposits in the context of industrial applications,		
	OR,	[20M]	CO4
	Illustrate the geological distribution, mode of occurrence, genesis, and economic importance of copper deposits in India highlighting the major manganese-producing states.		

thickne		_	•	leposit. The average ore te the total reserve and		
Trenc	h Ore Thickness (m)	Area (m ²)	Density (t/m³)	Al ₂ O ₃ Grade (%)		CO3
T1	3.5	1800	2.5	45	[20M]	
T2	4.0	2200	2.5	47		
T3	2.5	1600	2.5	44		
T4	3.0	1400	2.5	46		