Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Hydrological Modelling

Semester: VI **Program:** B.Tech. (Sustainability Engineering) Time: 03 hrs.

Course Code: SUEN3005 Max. Marks: 100

Instructions: 1. Read all questions carefully before attempting.

2. In numerical, show formulas, necessary calculations, units, and assumptions clearly.

3 Write legibly and neathy Illegible answers may result in less marks

	3. Write legibly and neatly. Illegible answers may result in less marks	5.	
	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	Explain water as a blessing and as a curse.	4	CO2
Q 2	What are the forms of precipitation? Explain.	4	CO1
Q 3	What is evapotranspiration?	4	CO1
Q 4	What is difference between calibration and validation of a hydrologic model?	4	CO2
Q 5	In what scenarios would a lumped integral model be preferred over a distributed differential model?	4	CO2
	SECTION B		ı
	(4Qx10M= 40 Marks)		
Q 6	Sketch a single-peaked hydrograph, and explain its components? Additionally, describe the practical steps involved in interpreting the different parts of the hydrograph to understand the flow characteristics of a river or stream.	10	CO3
Q 7	Analyze in detail the various factors that affect a runoff hydrograph. How do these factors interact to influence the shape and characteristics of the hydrograph, and what implications do they have for flood prediction and water resource management?	10	CO3
Q 8	Evaluate how various catchment characteristics affect the runoff of a stream. What specific factors within the catchment area influence the volume and timing of runoff, and how do these factors interact to shape the overall hydrological response of the stream?	10	CO4
Q 9	Evaluate practical examples of flood types and their typical impacts on affected areas for all common types of floods.		
	OR Differentiate between hydrologic and hydraulic flood routing in detail. Additionally, describe practical examples of each method and explain how they are applied in real-world flood management scenarios.	10	CO3

							(2		CTIC M=4			s)				
Q 10	The isohyetal map for 24 hours storm gave the areas enclosed between different isohyets, as follows:															
	Isohy (mm		21	1 2	0.	19	18	17	16	15	5	14	13	12	20	CO4
		(km ²))			2030				30 35		3710	3880	3715		
	Determine the average depth of rainfall over the basin.															
Q 11	The various data were obtained for rains of various durations at a station for 31 years. The records were analyzed and eleven worst storms of various durations have been stipulated in their decreasing order, as shown in Table:															
		5 minutes 10 m							60 minutes		90 minute					
		Ppt.	Year	Ppt. in cm	Year	Ppt. in cm	Year	Ppt. in cm	Year	Ppt. in cm	Yea	r Ppt		Ppt.		
			1908	1.20	1908	1.40	1908	1.74	1908	2.15	190					
			1915 1921	1.04 0.93	1915 1904	1.18 1.11	1904	1.55 1.36	1904 1915	1.92 1.70	191 190		.			
	. '		1904	0.88	1921	1.11	1921	1.22	1926	1.45	192	. 1				
			1926	0.84	1926	0.97	1926	1.18	1921	1.40	192		1			
	1926	0.62	1934	0.80	1934	0.92	1931	1.10	1914	1.33	191			1.64		
	1931	0.51	1929	0.78	1929	0.90	1934	1.05	1931	1.25	193	1 1.40	1914	1.55		
	1904	0.45	1931	0.68	1931	0.82	1929	1.01	1934	1.20	191	7 1.36	5 1931	1.51		
	1917	0.36	1911	0.52	1911	0.67	1911	0.95	1929	1.14	193	4 1.34	1 1934	1.46		
	1914	0.28	1917	0.51	1917	0.62	1917	0.83	1911	1.11	192	9 1.27	7 1929	1.41		
	1911	0.21	1914	0.39	1914	0.50	1914	0.79	1917	1.09	191	1 1.23	3 1911	1.34	20	604
	Plot th	ne int	ensit	y-dur	ation	curv		r stor R	ms of	frequ	uen	cies 1	1 and	1.4	20	CO4
	The maximum values of 24 hours summer precipitation at a rain gauge station are indicated below:															
	Year	Year 1940		1941	194	2 19	943	1944	1945	1946	6 194	1947	1948	1949		
	Rainf (cm)	all 1	0.7	11.2				14.9	15.2				15.8	16.8		
	Year 195		950	1951	195	952 1953		1954	1955	195	6 1	1957	1958	1959		
	Rainfall (cm)		.7	11.3	11.	6 1	1.9	12.4	12.7	6.4	,	10.5	9.2	18.7		
	Year		960	1961	196	52 19	963	1964	1965	196	6	1967	1968	1969		
	(cm)	(cm)		17.7		6.9 15.4		13.8					16.6	17.2		
	Estimate (a) 5 y								ing a 1	recuri	reno	ce inte	erval o	of		