Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Advanced Foundation Design
Program: B Tech Civil Engineering
Course Code: CIVL 3069P
Semester: VI
Time: 03 hrs.
Max. Marks: 100

Instructions: Draw neat sketch and assume suitable data if required and mention those clearly.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	A square footing fails by general shear in a cohesionless soil under an ultimate load of $Q_u = 7500 \ kN$. The footing is placed at a depth of 12 m below ground level. Given $\varphi = 35^{\circ}$ ($N_c = 57.8, N_q = 41.4, N_{\gamma} = 42.4$) and $\gamma = 17 \ kN/m^3$, determine the size of the footing if the water table is at a great depth.	4	CO1
Q 2	A pile is driven in a uniform clay of large depth. The clay has an unconfined compression strength of $90 kN/m^2$. The pile is $30 cm$ diameter and $6 m$ long. Determine the safe frictional resistance of the pile, assuming a factor of safety of 3. Assume the adhesion factor $\alpha = 0.7$.	4	CO2
Q 3	Describe various types of drilled pier foundation with neat sketches.	4	CO3
Q 4	Describe in short, the following with respect to machine foundations: (a) Frequency (b) Amplitude (c) Time period	4	CO4
Q 5	A mass supported by a spring oscillates at a natural frequency of 16 <i>Hz</i> . Determine the corresponding static deflection of the mass.	4	CO4
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	 (a) Explain pile group efficiency. (b) A group of 16 piles of 50 cm diameter is arranged with a centre to centre spacing of 1.0 m. The piles are 9 m long and are embedded in soft clay with cohesion 30 kN/m². Bearing resistance may be neglected for the piles—Adhesion factor is 0.6. Determine the ultimate load capacity of the pile group. 	2+8	CO1
Q 7	Discuss different methods for pile installation. OR Describe negative skin friction with neat sketch and how it can be assessed.	10	CO2

Q 8	Illustrate any three types of caisson foundation with neat sketches and mention their functions.	10	CO3	
Q 9	(a) Write a short note on viscous damping.(b) Derive the standard equation of motion for undamped free vibration of a spring–mass system.	3+7	CO4	
SECTION-C (2Qx20M=40 Marks)				
Q 10	(a) Design a square pile group to carry 400 kN in clay with an unconfined compression strength of 60 kN/m². The piles are 30 cm diameter and 6 m long. Adhesion factor may be taken as 0.6.			
	(b) A square pile group of 9 piles pass through a recently filled up material of 4.5 m depth. The diameter of the pile is 30 cm and pile spacing is 90 cm centre to centre. If the unconfined compression strength of the cohesive material is $60 kN/m^2$ and unit weight is $15 kN/m^3$, compute the negative skin friction of the pile group.	8+12	CO2	
Q 11	A 2 m wide strip footing carries a load intensity $400 kN/m^2$ at a depth of 1.2 m in sand. The saturated unit weight of sand is $19.5 kN/m^3$ and unit weight above water table is $16.8 kN/m^3$. The shear strength parameters are $c=0$ and $\varphi=35^\circ$ ($N_c=57.8, N_q=41.4, N_\gamma=42.4$). Determine the factor of safety using Terzaghi's equations with respect to shear failure for the following cases: (i) When water table is at 4 m below ground level (GL) (ii) When water table is at 2.5 m below GL (iii) When water table is at 1.2 m below GL (iv) When water table is at 0.5 m below GL (v) When water table is located at GL			
	OR	20	CO1	
	A raft footing is founded at a depth of $0.5 m$ below GL in a $18.5 m$ thick stratum of normally consolidated clay underlain by a dense sand layer is to be supported by a group of 16 piles of embedded depth of $12 m$ and diameter $500 mm$ arranged in a square formation. The gross load to be carried by the pile group including the self-weight of the pile cap is $4000 kN$. The piles are spaced at $1.2 m$ c/c and the water table is located at the ground level. The properties of the foundation soil are: $\omega = 34 \%$, $G = 2.65$ and $LL = 42 \%$. Estimate the probable consolidation settlement of the pile group.			