Name:

Enrolment No:

Marks

CO

UPES

End Semester Examination, May 2025

Course: Flight Stability and Control

Program: B.Tech. Aerospace Engineering

Course Code: ASEG3023

Semester: VI

Time : 03 hrs.

Max. Marks: 100

Instructions:

S. No.

- + Read all questions carefully before attempting them.
- + Write neatly and legibly. Illegible answers may not be evaluated.
- + Show all necessary calculations and clearly state any assumptions made.
- + Use appropriate formulas and standard values where applicable.
- + Any extra answers beyond the specified number of questions will not be evaluated and will be treated as an over-attempt.
- + Always mention appropriate units in all numerical answers.
- + *Note:* Section C contains internal choice. Read the instructions carefully before attempting.

Statement of question

SECTION A (5Qx4M=20Marks)

		Mains	60
Q1.	What is the significance of flap in the elevator effectiveness, write an expression for the same.	4	CO2
Q2.	Mathematically how you define neutral point.	4	CO2
Q3.	Explain the difference between power-off and power-on neutral point of an aircraft. How does engine power influence the location of the neutral point?	4	CO2
Q4.	Explain what happens to δ_e when CG shifts forward.	4	CO2
Q5.	Graphically represents a system which is statistically stable but dynamically unstable.	4	CO4
	SECTION B		
	(4Qx10M=40 Marks)		
Q6.	Show with some example how much a designer will take the CG forward or restrict the forward CG by elevator deflection limitations by taking appropriate values. Assume $\delta_{e \text{ max}}$ as 10 degrees and 15 degrees.	10	CO3
Q7.	Differentiate between stick-fixed and stick-free neutral points. Differentiate between CG limits with and without power. Why is this distinction important for aircraft stability?	10	CO3
Q8.	Derive an expression for δ_{e} trim and δ_{e} reqd.	10	CO3
Q9.	Explain Neutral point and fuselage contribution with the help of an expression.	10	CO2

SECTION-C (2Qx20M=40 Marks)				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	The characteristic equation of an airplane is $\lambda 2$ -0.5 λ +9.5=0. Determine whether the motion is dynamically stable or unstable. OR For an aircraft neutral point stick fixed is 0.5, static margin is located at			
1	30% of MAC. Now we have to trim our aircraft at 0.6, elevator deflection is 0° and trim at 0.4, elevator deflection 4° downward then calculate: (a) elevator control power (b) if new CG is at 40% or MAC, what is the C_L trim for δ_e =0°	20	CO4/CO3	
1	An airplane has the following hinge moment characteristics: An airplane has the following hinge moment characteristics: Wing lift curve slope, $C_{L\alpha w}=0.09$ per degree, Tail lift curve slope, $C_{L\alpha t}=0.08$ per degree, Hinge moment derivative with respect to angle of attack, $C_{h\alpha}=-0.003$ per degree, Hinge moment derivative with respect to elevator deflection, $C_{h\delta}=-0.005$ per degree, Hinge moment constant, $C_{h\sigma}=0.0$, Tail volume ratio, $V_H=0.4$, Tail area ratio, $S_t/S=0.35$, Downwash gradient, $d\epsilon/d\alpha=0.4$. Determine the location of the stick-free neutral point for the given configuration. OR Show that directional stability of airplane is given by $C_{n\beta_v}=V_v\eta_vC_{L_{\alpha_v}}\left(1+\frac{d\sigma}{d\beta}\right)$	20	CO3/C04	