Name:

Enrolment No:

: 6th

: 03 hrs.

UPES

End Semester Examination, May 2025

Course: Automotive Thermal Management Semester Program: B. Tech-Automotive Design Engineering Time

Course Code: MECH-3027 Max. Marks: 100

Instructions: Assume any missing data and mention it clearly.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Explain the Fourier's Law of heat conduction.	4	CO1		
Q 2	What is Reynolds Number? State its importance.	4	CO2		
Q 3	Distinguish between free and forced convective heat transfer by taking suitable example.	4	CO3		
Q 4	Analyze the role of a black body in radiation heat transfer and evaluate how emissivity affects heat transfer in real-world systems. Compare and contrast black bodies and gray bodies, and provide examples of each in engineering applications, assessing their impact on system design.	4	CO4		
Q 5	Evaluate the critical radius of insulation and explain why insulation might increase heat loss in some cases. Using a practical example of a pipe, analyze how the insulation thickness impacts heat transfer and justify when adding insulation reduces or increases heat loss.	4	CO5		
	SECTION B				
	(4Qx10M= 40 Marks)				
Q 6	A small copper sphere of diameter 2 cm is initially at a temperature of 300°C and is suddenly immersed in a fluid at 50°C with a convective heat transfer coefficient of h=120 W/m² °C Assume properties of copper: • ρ=8950 kg/m³ • cp=385 J/kg K • k=400 W/m °C Determine: 1. Whether lumped system analysis is applicable. 2. The temperature of the sphere after 60 seconds.	10	CO2		
Q 7	Deduce mathematical formulation for three-dimensional heat conduction equation with internal heat generation in cylindrical coordinates.	10	CO3		
Q 8	Engine oil at 80°C flows over a flat surface at 40°C for cooling purpose, the flow velocity being 2 m/s. Determine the hydrodynamic and thermal	10	CO4		

			I
	boundary layer thickness at a distance of 0.4 m from the leading edge. Also determine the local and average values of friction and convection coefficients. Take the following properties kinetic viscosity = 83×10^{-6} m ² /s, Pr= 1050. Thermal conductivity = 0.1407 W/m K.		
Q 9	A straight aluminum fin of rectangular cross-section (thickness = 2 mm, width = 50 mm, length = 100 mm) is attached to a wall maintained at 150°C. The surrounding air is at 30°C, and the convective heat transfer coefficient is h=60 W/m² °C. The thermal conductivity of aluminum is k=200 W/m °C. Assume steady-state, one-dimensional heat conduction with adiabatic tip. Determine: 1. The fin efficiency. 2. Explain what the result implies about the fin's performance.	10	CO5
	OR		
	A cylindrical pin fin of length 5 cm and diameter 6 mm is used on a surface at 120°C, exposed to air at 25°C. The heat transfer coefficient is h=45 W/m ² °C, and the thermal conductivity of the fin material is k=15 W/m °C. Determine:		
	1. The effectiveness of the fin.		
	2. Comment on whether adding this fin is beneficial.		
	SECTION-C		
	(2Qx20M=40 Marks)		
Q 10	Consider a cylindrical furnace with radius and height of 1 m, as shown in figure. The top (surface 1) and the base (surface 2) of the furnace has emissivity ε_1 =0.8 and ε_2 =0.4, respectively, and are maintained at uniform temperatures T_1 =700 K and T_2 =500 K. The side surface closely approximates a black body and is maintained at a temperature of T_3 =400 K. Determine the net rate of radiation heat transfer at each surface during steady operation and explain how these surfaces can be maintained at specified temperatures. $T_1 = 700 \text{ K}$ $\varepsilon_1 = 0.8$ $T_2 = 700 \text{ K}$ $\varepsilon_1 = 0.8$	20	CO5
	$\begin{array}{c} T_2 = 500 \text{ K} \\ \epsilon_2 = 0.4 \end{array}$		
	-2 - 0.4		

Q 11	A counter-flow heat exchanger is used to heat cold water from 20°C to 60°C using hot oil that enters at 120°C and leaves at 80°C. The mass flow rates are: • Water: \dot{m}_c =1 kg/s, Cp _c =4180 J/kg °C • Oil: \dot{m}_h =2 kg/s, Cp _h =2100 J/kg °C		
	Assume:		
	No heat loss to surroundings.		
	Constant specific heats. Determine		
	Determine 1. The effectiveness of the best evolunger		
	 The effectiveness of the heat exchanger. The heat transfer rate. 		
	3. The required heat exchanger area if the overall heat transfer		
	coefficient is U=300 W/m ² ⁰ C		
		20	CO5
	OR		
	In a parallel-flow heat exchanger, hot gases at 300°C enter at a flow rate		
	of 2 kg/s with Cp _h =1000 J/kg ⁰ C while cold water at 25°C enters at 1.5		
	kg/s with $Cp_c=4180 J/kg$ ^{0}C		
	After heat exchange: • Hot gas exits at 150°C		
	• Cold water exits at 100°C		
	Assume U=200 W/m ² ⁰ C		
	Determine Determine		
	1. The rate of heat transfer.		
	2. LMTD		
	3. The required surface area of the heat exchanger		