N	ama.
IN	ame:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Organic Chemistry-V
Program: B.Sc. (H) Chemistry
Course Code: CHEM3017
Semester: VI
Time : 03 hrs.
Max. Marks: 100

Instructions: Read all the instructions below carefully and follow them strictly:

- 1) Mention Roll No. at the top of the question paper.
- 2) Internal choice has been given in Q9 and Q11.
- 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Discuss anionic polymerization mechanism with the help of a suitable example.	4	CO2
Q 2	Differentiate between addition and condensation polymerization.	4	CO1
Q 3	Describe polymer additives with suitable examples.	4	CO2
Q 4	In IR spectra of H_2N , >C=O peak is obtained at O_2N , >C=O peak gets shifted to 1700 cm ⁻¹ . Why?	4	CO3
Q 5	Which among the following can be used as solvent for UV spectroscopy and why: cyclohexane, acetone, butadiene, ethanol	4	CO1
	SECTION B		
Q 6	(4Qx10M=40Marks) Discuss the structure elucidation of Maltose.		~~.
		10	CO4
Q 7	Write short notes on the following: a. Edible dyes b. Phthalein dyes	5+5	CO2
Q 8	On the basis of Woodward rules, calculate the expected position of the absorption maximum for the following compounds:	10	CO3

	a. b.		
	Given that, Each exocyclic double bond = +5 mµ Each double bond extending conjugation = +30 mµ		
	For dienes or trienes: Basic value for butadiene system or a cyclic conjugated diene = 217 mµ Homoannular conjugated diene = 253 mµ Heteroannular conjugated diene = 215 mµ Each alkyl substituent of ring residue = +5 mµ		
	For α , β -unsaturated carbonyl compounds: Basic value for α , β -unsaturated ketone = 215 m μ Basic value for α , β -unsaturated aldehyde = 207 m μ Each alkyl group or ring residue at α -position = +10 m μ Each alkyl group or ring residue at β -position = +12 m μ Each alkyl group or ring residue at γ -position = +18 m μ Homoannular conjugated diene = +39 m μ		
Q 9	Classify the polymers on the basis of: a. Thermal behaviour b. Tacticity OR Write short notes on the following: a. Mutarotation b. Polyester	10	CO1
	SECTION-C (2Qx20M=40 Marks)		1
Q 10	Discuss the preparation and two uses of the following polymers: a. Polythene b. PF resin c. Nylon 66 d. Neoprene	20	CO2
Q 11	A. Give structures consistent with each of the following sets of NMR data:		CO3

a) C₃H₈O

- (i) Triplet, $\delta = 0.94$ (3H)
- (ii) Triplet, $\delta = 3.58$ (2H)
- (iii) Sextet, $\delta = 1.57$ (2H)
- (iv) Singlet, $\delta = 2.26$ (1H)

b) C₃H₃Cl₅

- (v) Triplet, $\delta = 4.52$ (1H)
- (vi) Doublet, $\delta = 6.07$ (2H)

OR

What is the operating frequency required by an H-NMR spectrometer than generates a magnetic field of 14.820 Tesla. (Given, gyromagnetic ratio = $2.675 \times 10^8 \text{ Tesla}^{-1}\text{sec}^{-1}$)

B. Which chemical is used as standard in NMR spectroscopy and why? Predict the multiplicity of each kind of proton in the given molecules:

$$CH_2Br$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

OR

Explain the factors affecting the vibrational frequencies of the particular group in IR spectroscopy with the help of suitable examples.

10 + 10