Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Stellar Evolution

Program: B. Sc

Course Code: PHYS 3024P

Semester: VI Time: 03 hrs.

Max. Marks: 100

Instructions: Answer all questions in Section A. Answer any 4 questions in Section B.

Answer any 2 questions in Section C.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	COs
Q 1	Evaluate the mean number of scatterings the photons would suffer within the Sun considering the average time to escape is 10 ⁶ years.	4	CO3
Q 2	Write down Saha's ionization equation explaining all of the terms. Mention two uses of Saha's equation.	2+2	CO3
Q 3	For $\rho = \rho_c[1-(r/R)]$, calculate the average density of the star, where ρ , ρ_c , r, and R are density, central density, radial distance, and radius of the star respectively.	4	CO2
Q 4	Define Eddington's luminosity. Calculate the Eddington's luminosity for 50 M☉ star.	2+2	CO1
Q 5	Mention at least four uses of Lane-Emden's equation.	4	CO4
	SECTION B		1
	(4Qx10M= 40 Marks)		
Q 1	Calculate the fractional mass within a star where radiation pressure and gas pressure are equal. Use point source model to obtain the result.	10	CO4
Q 2	Arrive at the temperature gradient equation to show that the stellar temperature profile drops as radius increases.	10	CO3
Q 3	What are the differences between Euler and Lagrangian derivatives? Write down the operator to evaluate the change of any physical quantity in a moving co-ordinate. Use the operator to obtain the steady state form of the Euler equation.	2+2+6	CO3
Q 4	Evaluate the dynamical time scales for 10 & 50 M $_\odot$ stars. The mass-radius relationship could be assumed as (R/R_\odot) α $(M/M_\odot)^{4/5}$ for main sequence stars.	5 + 5	CO2

	Or Describe the evolution process of low mass stars with suitable diagrams.	10		
SECTION-C (2Qx20M=40 Marks)				
Q 1	Derive the energy equation of main sequence stars.	20	CO2	
Q 2	Obtain the $R^{(3-n)}$ α 1/ $M^{(n-1)}$ using Lane-Emden's equation, where R, M, and n are radius, mass and polytropic index of a star respectively. Or Demonstrate the isothermal stellar wind solution which causes mass loss from a star.	20	CO4	