Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Programme Name: B.Sc. (H) Mathematics By Research Semester: IV
Course Name: Complex Analysis Time: 03 hrs
Course Code: MATH 2057 Max. Marks: 100

Nos. of page(s) : 02

Instructions: All questions are compulsory. Use of calculator is not allowed.

SECTION A (5Qx4M=20Marks)				
S. No.	(5QA411-20111a1 K5)	Marks	CO	
Q1	Determine the biggest subset <i>S</i> of the set of complex numbers \mathbb{C} on which the complex function $f(z) = e^{z^2} + (1+i)\overline{z}$ is differentiable.	4	CO1	
Q2	Suppose $u(x, y)$ and $v(x, y)$ are both harmonic functions on domain U . Is $f = u + iv$ analytic on U ? Justify your answer.	4	CO1	
Q3	Evaluate the contour integral $\oint_C z d\overline{z}$ where contour <i>C</i> is the unit circle $ z - a = r$ oriented counterclockwise.	4	CO2	
Q4	If $k(>0)$ is an integer then find the radius of convergence of power series $\sum_{n=1}^{\infty} n \ln(n+1) \ z^{kn}$ Find the residue of the function $f(z) = \frac{e^{\frac{1}{z}}}{\sinh z}$ at the singularity $z = 0$.	4	CO2	
Q5	Find the residue of the function $f(z) = \frac{e^{\frac{1}{z}}}{\sinh z}$ at the singularity $z = 0$.	4	CO3	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	Discuss the existence of the limit $\lim_{z\to 0} e^{\left(1+\frac{1}{z^4}\right)}$ using suitable paths passing through the point $z=0$.	10	CO1	
Q7	Suppose $f = u + iv$ is entire such that $u^2 \le v^2 \ \forall z \in \mathbb{C}$. Is $f \equiv$ constant? Prove or give counterexample to discard the statement.	10	CO2	

Q8	Use Laurent series expansion by defining a suitable annular open connected set $r < z - 1 < R$ to comment correctly on the nature of singularity for $f(z) = \frac{z}{z^2 - 1}$ at the point $z = 1$.	10	CO2
Q9	Suppose C is an arbitrary closed simple curve on complex plane with unknown orientation. Evaluate the integral $\left \frac{1}{2\pi}\right \oint_C \frac{\sin z \cos^2 z + z^{2025}}{e^{2023z}} dz$ OR Determine the value of $k \in \mathbb{Z}_{>0}$ so that $\frac{1}{2\pi i} \oint_C \frac{z^2 - z - k}{z - k} dz = 0$ where C is an arbitrary closed simple curve enclosing the point $z = k$ on complex plane.	10	CO3
	SECTION-C (2Qx20M=40 Marks)		
Q10	Consider $f(z) = \frac{e^{\frac{1}{z}}}{1-\cos z}$. (i) Determine all the singularities of $f(z)$. (ii) Discuss the behavior of $f(z)$ at the singularity $z = 0$. (iii) If C is the circle $z = e^{i2\theta}$, where $\theta \in [0,2\pi)$ then find the value of $\oint_C z^2 f(z) dz$ (iv) Find the order of poles at $z = 2\pi k, k \in \mathbb{Z} \setminus \{0\}$.	20 [5+5+ 5+5]	CO2
Q11	Use calculus of residues to prove the following $\int_0^{2\pi} \frac{\sin^2 \theta}{a + b \cos \theta} \ d\theta = \frac{2\pi}{b^2} \Big(a - \sqrt{a^2 - b^2} \Big), a > b > 0$ OR Find the principal value of the real integral $\int_{-\infty}^{\infty} \frac{\sin x}{x(x^2 - x + 2)} \ dx ,$ by clearly showing how the value of the integral $\int_{z(z^2 - z + 2)}^{e^{iz}} dz \to 0 \text{ along the semicircular arc in upper half complex plane.}$	20	CO3