Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Partial Differential Equations Semester: IV
Program: B. Sc. (Hons.) Mathematics by Research
Course Code: MATH2054

Semester: IV
Time: 03 hrs.
Max. Marks: 100

Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 10 marks) and attempt all questions from Section C (each carrying 20 marks). Question 6 and 11 have internal choice.

SECTION A (5Qx4M=20Marks)

	(5\(\frac{2}{4}\)\(\frac{1}{4}\)\(\f		
S. No.		Marks	CO
Q 1	Compute the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(1, \log_e 2)$ where the function $f(x, y) = xe^{x^2y}$.	4	CO1
Q 2	Locate the stationary point(s) of the function $f(x,y) = (x+y)e^{-x^2-y^2}.$	4	CO1
Q 3	Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and $g(x)$ from the relation given as $z(x,y) = f(x) + e^y g(x).$	4	CO2
Q 4	Find the general solution of Lagrange's equation $yzp + zxq = xy,$ where p stands for $\frac{\partial z}{\partial x}$ and q stands for $\frac{\partial z}{\partial y}$.	4	CO2
Q 5	Determine the region in the xy -plane in which the following equation is hyperbolic: $[(x-y)^2-1]u_{xx}+2u_{xy}+[(x-y)^2-1]u_{yy}=0.$	4	CO3
	SECTION B		4
	(4Qx10M=40 Marks)		
Q 6	Expand the function $f(x, y) = e^{2x-y}$ in a Taylor's series about the point $(x, y) = (0, 1)$ upto the quadratic terms. From this series estimate the value of $f(x, y)$ at $(-0.1, 1.1)$. OR A tent of a given volume has a square base of side $2a$, has its four-side vertical of length b and is surmounted by a regular pyramid of height b .	10	CO1
	Find the values of a and b in terms of h such that the canvas required for its construction is minimum.		

Q 7	Apply Charpit's method to find the complete solution of the non-linear partial differential equation $16p^2z^2 + 9q^2z^2 + 4z^2 - 4 = 0 \text{ (where } p \equiv \frac{\partial z}{\partial x} \text{ and } q \equiv \frac{\partial z}{\partial y}.)$	10	CO2		
Q 8	Solve the partial differential equation $(D+D'-1)(D+2D'-3)z=4+3x+6y,$ where $D\equiv\frac{\partial}{\partial x}$ and $D'\equiv\frac{\partial}{\partial y}$.	10	СОЗ		
Q 9	Find the temperature in a laterally insulated bar of $2 cm$ length whose ends are kept at zero temperature and the initial temperature is $\sin \frac{\pi x}{2} + 3 \sin \frac{5\pi x}{2}$.	10	CO4		
SECTION-C					
Q 10	(2Qx20M=40 Marks) (i) Find the general solution of the partial differential equation				
	$(D^3 - 7DD'^2 - 6D'^3)z = \sin(x + 2y) + e^{3x + y},$				
	where $D \equiv \frac{\partial}{\partial x}$ and $D' \equiv \frac{\partial}{\partial y}$.	10+10	CO3		
	(ii) Reduce the differential equation $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form.				
Q 11	The vibration of an elastic string is governed by the partial differential equation $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}.$ The length of the string is π and the ends are fixed. The initial velocity is zero and the initial deflection is $u(x,0) = 2(\sin x + \sin 3x)$. Find the deflection $u(x,t)$ of the vibrating string at any time t .				
	OR				
	Solve the partial differential equation: $\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2} ,$	20	CO4		
	with the conditions				
	y(0,t) = y(5,t) = 0; y(x,0) = 0, and				
	$\left(\frac{\partial y}{\partial t}\right)_{t=0} = 3\sin 2\pi x - 2\sin 5\pi x.$				