Enrolment No: ## UPES End Semester Examination, May 2025 Course: Oil Field Development Semester: IV Program: M. Sc. Petroleum Geosciences Time : 03 hrs. Course Code: PEGS 8034 Max. Marks: 100 Nos. of page(s): 3 ## **Instructions:** (a) All Questions are Compulsory in Sections A, B and C. (b) Choices are given in Section B (Question 9) and Section C (Question 11). (c) Answers must carry supporting material such as equations and diagrams. ## SECTION A (5Qx4M=20Marks) Answer all questions | | Answer an questions | | | | | | | |--------|--|---|-----|--|--|--|--| | S. No. | | Marks | CO | | | | | | Q 1 | State the terms source rock, reservoir rock, faults and folds with suitable sketches. | rms source rock, reservoir rock, faults and folds with suitable 4 CO | | | | | | | Q 2 | Illustrate the different phases of oil and gas field. List the temperatures at which oil and gas formation occurs. | 4 | CO1 | | | | | | Q 3 | Define porosity, permeability, recovery factor, and productivity index with suitable equations. | 4 | CO2 | | | | | | Q 4 | Enumerate the different oil & gas reserves estimation methods. List out the different types of reserves with flow diagram. | 4 | CO2 | | | | | | Q 5 | Explain different types of EOR methods with flow diagrams. | 4 CO3 | | | | | | | | SECTION B | | | | | | | | | (4Qx10M = 40 Marks) | | | | | | | | Q 6 | (a) Illustrate different steps of the initial development plan. Explain development strategy for oil & gas fields.(b) Define well Spacing. Illustrate 5-spot pattern & inverted 5-spot pattern with suitable Figures. | 10
(5+5) | CO2 | | | | | | Q 7 | remainin | and calculate ample reservoir 900 psig. | | CO3 | | | |------|--|--|--------------------------------|-----|---------|-----| | | Data Giv | | 10 | | | | | | $N = 90.46 \times 10^6 \text{ [STB]}$ | | | | | | | | B _o at 900 | | | | | | | Q 8 | | Discuss CAPEX, OPEX, NCF, probability and sensitivity analysis with suitable examples and equations. | | | | | | Q 9 | Discuss modern approaches of digitalization in oil and gas industry with suitable examples. OR Describe the future trends and technological advancement in oil field development. | | | | | CO5 | | | 1 | | SECTION-C
(2Qx20M=40 Marks) | | | | | Q 10 | (a) Discuss the HSE rules & regulations for the oil & gas industry. Discuss the sources of solid waste sludge. Explain the various steps in solid waste management. (b) Describe advantages of DCA. Assuming exponential decline, predict the rate after 12 months and after 22.5 months if a well has declined from 100 BOPD to 96 BOPD during a one-month period. Also predict the amount of oil produced after one year. | | | | | CO4 | | Q 11 | (a) Discuss risk analysis. Write down the variables and methods used in risk.(b) Find the payback period for the cash flows given below: | | | | | | | | | Year | Cash flow (\$) | | | | | | | 0 | -20,000 | | 20 | CO5 | | | | 1 | 15,000 | | (10+10) | 603 | | | | 2 | 12,000 | | | | | | | 3 | 10,000 | | | | | | | 4 | 5,000 | | | | | | | | 1 | _ | | | OR (a) Discuss Net Present Value (NPV). If any Person invested in three opportunities and invested as follows: Rs.1000 Ist Year Rs.1500 2nd Year Rs.2000 3rd Year Calculate NPV from above mentioned. To calculate NPV, we must calculate PV factor of every cash flow at a discount rate of 5% (say). (b) Given the following data for the sandstone oil field: Area = 26,700 acres Net productive thickness = 49 ft Porosity = 8% Average Swi = 45% Initial reservoir pressure, pi = 2980 psia Abandonment pressure, pa = 300 psia Bo at pi = 1.68 bbl/STB Bo at pa = 1.15 bbl/STB Sg at pa = 34% Sor after water invasion = 20% ## Calculate: - 1. Initial oil in place - 2. Oil in place after volumetric depletion to abandonment pressure - 3. Oil in place after water invasion at initial pressure - 4. Oil reserve and Recovery Factor by volumetric depletion to abandonment pressure - 5. Oil reserve and Recovery factor by full water drive