Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Green Chemistry & Sustainably
Program: M.Sc. Chemistry
Course Code: CHEM8058

Semester: IV
Time: 03 hrs.
Max. Marks: 100

Instructions:

- Write your name and enrolment no. at the top of the question paper.
- Do not write anything else on the question paper except your name and roll number.
- Attempt all the parts of a question at one place only.
- CO in the last column stands for course outcomes and it is for official use only.
- Internal choice has been given for Q 9 and Q 11.
- Schematic representations are highly encouraged during answering the questions.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО	
Q 1	Define Green Chemistry and explain its necessity in modern chemical practices.	4	CO1	
Q 2	Calculate the atom economy for the synthesis of water from hydrogen and oxygen.	4	CO2	
Q 3	List and briefly describe any four principles of Green Chemistry.	4	CO1	
Q 4	Elucidate the role of supercritical fluids as green solvents in organic reactions.	4	CO2	
Q 5	Exemplify the use of carbohydrates as green starting materials in chemical synthesis.	4	CO3	
	SECTION B			
(4Qx10M= 40 Marks)				
Q 6	Discuss the limitations and challenges faced in the implementation of Green Chemistry principles.	10	CO1	
Q 7	Explain the design of a green synthesis for paracetamol, highlighting the principles applied.	10	CO3	
Q 8	Compare and contrast the use of water and ionic liquids as green solvents.	10	CO2	
Q 9	Describe the microwave-assisted oxidation of toluene to benzoic acid, emphasizing its green aspects. OR	10	CO3	
	Elaborate on the use of solid acid catalysts like zeolites in green chemical reactions.	10		

SECTION-C (2Qx20M=40 Marks)				
Q 10	Discuss the integration of ultrasound and microwave technologies in green chemical reactions, highlighting their advantages and potential limitations.	20	CO3	
Q 11	Critically evaluate the application of the 12 principles of Green Chemistry in designing a sustainable chemical synthesis, using specific examples. OR Discuss the possibility of environmental CO ₂ as a starting material in polymer industry, food industry, and energy application(s).	20	CO2	