Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Strength of Materials

Program: BTech (Fire and safety Engineering)

Course Code: MECH 2085

Semester: IV

Time : 03 hrs.

Max. Marks: 100

Instructions:

- Attempt all questions.
- Use neat diagrams wherever necessary.
- Assume suitable data if required.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Fill in the blank: a) The unit of stress is b) Torque produces stress in a shaft.	2 2	CO1
Q 2	Prove that the hoop stress in thin-walled pressure vessel is exactly twice the longitudinal stress.	4	соз
Q 3	Define the following: i. Factor of safety ii. Deflection	2 2	CO1
Q 4	A fire truck's high-pressure hose is subjected to cyclic loading during use. Discuss: i. The stress conditions in the hose ii. How strength of materials ensures safety	2 2	CO2
Q 5	Briefly explain the significance of material selection in fire hose couplings.	4	CO4
	SECTION B		•
	(4Qx10M = 40 Marks)		
	Attempt any four question		
Q 6	A cylindrical fire extinguisher of internal radius 100 mm, wall thickness 4 mm, is subjected to internal pressure of 100 bar. Determine the hoop stress and longitudinal stress in the wall. Is the design safe if the material yield strength is 250 MPa?	3+3+4	CO4

Q 7	A hospital floor steel beam is subjected to fire. At 550°C, the beam is still loaded, but the modulus of elasticity drops. Calculate how much deflection increased due to heat. Given: Beam span: L=5.5 m Uniform load: w= 8.4 kN/m Moment of inertia: I=8×10-6 m4 E(room)=200 GPa E(fire)=50 GPa	10	CO4
Q 8	Fire Extinguishers are the most commonly used safety precautionary device in the industry and households. Let us consider Clean Carbon Dioxide Gas Based Fire Extinguishers. The dimensions are: V • Capacity- 5Kg • Height - 700 mm • Diameter - 152 mm • Fire Rating - 89B V Pressure inside the extinguisher-5MPa V Nozzle diameter: 0.02m V The lever length:10 cm. V The force required to trigger the extinguisher (force at the lever end) is 40 N.		CO 1
	meters. ii. calculate the discharge force coming from the extinguisher once the pin is released.	5	
Q 9	A solid steel shaft used in a fire hose reel is subjected to torsional force while unwinding the hose during a fire emergency. The shaft must be strong enough to withstand the applied torque without failure. Given: > Length of the shaft (L): 0.8 m > Diameter of the shaft (d): 30 mm > Torque applied (T): 150 Nm > Modulus of rigidity (G): 80 GPa > Allowable shear stress for steel: 60 MPa Calculate:	4	C 04
	i.Maximum shear stress developed in the shaft ii.Angle of twist over the shaft length iii.Check if the shaft is safe under the applied torque	4 2	

	 iv. Calculate support reactions at point B and D v. Draw shear force diagram (SFD) vi. Draw bending moments diagram (BMD) Note: show all the calculation steps 	4+4 6 6	
Q12	A steel pipe carrying water in a fire protection system of length five meters is horizontally supported at both ends.		C
	Given:		O2
	Pipe outer diameter: 120 mm		
	• Pipe wall thickness: 6 mm		
	 Density of water: 1000 kg/m³ Steel density (for pipe weight): 7850 kg/m³ 		
	Calculate:		
	 i. Weight per meter of the pipe (water + pipe) ii. Total load on the supports iii. Reactions at each support iv. Maximum bending moment 	7 3 3 7	