Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Machine Learning
Program: B.Tech. (Electronics and Computer Engineering)

Course Code: MECH 2077

Semester: IV
Time : 03 hrs.
Max. Marks: 100

Instructions: Attempt all the questions. All questions are compulsory. The scientific calculator is allowed.

SECTION A (5Qx4M=20Marks)

S. No.							Marks	CO
Q 1	Explain the term "Pr	4	CO1					
Q 2	Explain batch gradie	4	CO2					
Q 3	Explain the linear ke their main difference	4	CO3					
Q 4	Explain K-means clu	4	CO4					
Q 5	Explain Artificial Neural Networks (ANN) with an example.							CO5
				ECTION B DM= 40 Mark	as)			
Q 6	Define Artificial Intelligence (AI) and explain its goal of emulating human cognitive processes. Briefly outline the historical evolution of AI.							CO1
Q 7	Define machine learning (ML) and explain its primary goal. Compare supervised, unsupervised, and reinforcement learning by providing one example and key characteristics for each.							CO2
Q 8	Using the provided d							
	Study hours (X)	1	2	3	4	5		
	Test Scores (Y)	50	55	65	70	80	10	CO3
	Calculate the slope a score for a student w							

Q 9	Given the following four data points in 2D space: A : (1, 2), B : (2, 1), C : (4, 5), and D :													
	(5,4).													
	(i) Perform hierarchical clustering using the single linkage method.											od.	10	CO4
	(ii) Draw the dendrogram representing the hierarchical clustering process.											ess.		
	(iii) Based on the dendrogram, how many clusters would you form if the cutoff height													
	is 3?													
	I				(2		TION- M=40 M							
Q 10 A	Apply the K-NN algorithm (with K=3) to predict whether a patient is diabetic or not										not			
	based on the following dataset. The new patient has BMI = 43.6, Age = 40:													
	D. 67	22 -	26.	22.4	40.1	25.2	25.0	2 - 5	25.5	22.2	0.1			CO3
	BMI	33.6	6	23.4	43.1	35.3	35.9	36.7	25.7	23.3	31		10	
	Age	50	30	40	67	23	67	45	46	29	56			
	Sugar	1	0	0	0	1	1	1	0	0	1			
Q 10 B	Explain the working of neural networks, discuss their various types, and outline their												10	CO5
	advantages and disadvantages.												10	COS
Q 11	Define P	rincipa	l Com	ponent	Analys	is (PCA). Expl	ain all t	he steps	s involv	ed in P	CA		
	with an a	appropr	iate ex	ample.										
	OR												20	CO4
	Define the decision tree algorithm. List down the attribute selection measures used by													
	the Iterative Dichotomiser 3 (ID3) algorithm to construct a decision tree. Write the													
	advantages and disadvantages of the decision trees.													