Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Control System Engineering Program: B.Tech Electrical Engineering

Course Code: ECEG2068

Semester: IV

Max. Marks: 100

Time : 03 hrs.

Instructions: Use of Calculator is permitted. Assume any missing values.

SECTION A (50x4M=20Marks)

(5Qx4M=20Marks)				
S. No.		Marks	CO	
Q 1	The signal flow graph for a system is given below. Determine the transfer function $\frac{Y(s)}{U(s)}$ for the system. $U(s) = \frac{1}{1 - 4}$	4	CO1	
Q 2	A second order real system has the following properties: (a) The damping ratio $\zeta = 0.5$ and undamped natural frequency $\omega_n = 10 \text{ rad/s}$ (b) The steady-state value of the output to a unit step input is 1.02. Determine the transfer function of the system.	4	CO2	
Q 3	An open loop transfer function $G(s)$ of a system is $G(s) = \frac{K}{s(s+1)(s+2) + K}$ For a unity feedback system. Determine the breakaway point of the root loci on the real axis.	4	CO3	
Q 4	Determine the range of k where $k > 0$ for which the system given below is stable. $\frac{k}{s(s+3)(s+10)}$	4	CO2	

Q 5	If $x = Re\{G(j\omega)\}$ and $y = Im\{G(j\omega)\}$ then for $\omega \to 0^+$, determine the	4	CO4
	value of x from the Nyquist plot for $G(s) = \frac{1}{s(s+1)(s+2)}$.		
	SECTION B		•
	(4Qx10M= 40 Marks)		
Q 6	An electrical system and its signal-flow graph representations are shown in Figure (A) and (B) respectively. Find out the values of G_2 and H . $V_i(s) \qquad \qquad V_i(s) \qquad V$	10	CO1
Q 7	For a second order system with the closed-loop transfer function $T(s) = \frac{9}{s^2 + 4s + 9}$ Evaluate the settling time for 2-percent band.	10	CO2
Q 8	A system with transfer function $\frac{Y(s)}{X(s)} = \frac{s}{s+p}$ has an output $y(t) = \cos{(2t - \frac{\pi}{3})}$ for the input signal $x(t) = p\cos{(2t - \frac{\pi}{2})}$. Determine, the system parameter p .	10	СОЗ
Q 9	The Bode plot of a transfer function $G(s)$ is shown in the figure below.	10	CO4

	The gain $(20log G(s))$ is 32 dB and -8 dB at 1 rad/s and 10 rad/s, respectively. The phase is negative for all ω . Determine the transfer function $G(s)$. OR The open loop transfer function of a unity feedback system is given by $G(s) = \frac{3e^{-2s}}{s(s+2)}$ Determine the gain and phase crossover frequencies in rad/sec.		
Q 10	SECTION-C (2Qx20M=40 Marks) (a) Find the number of right-hand, left-hand and imaginary axis poles for the following characteristic equations.		
	(i) $1 + G(s)H(s) = s^4 + s^3 - s - 1$ (ii) $1 + G(s)H(s) = s^3 + s^2 + s + 1$ (iii) $1 + G(s)H(s) = s^3 - s^2 + s - 1$ (b) The open loop transfer function of a unity negative feedback system is given by $\frac{k(s+1)(s+2)}{(s+3)}$. Draw the root locus as the value of k varies from zero to infinity.	20	CO3
Q 11	(a) Consider the following transfer function: $G(s) = \frac{200}{s^3 + 11s^2 + 38s + 4}$ If the frequency response, is represented by $G(j\omega)$, Develop its rectangular and polar forms for $\omega = 1 \text{rad/sec}$. (b) Draw the Root Locus for the open loop transfer function given below. $G(s)H(s) = \frac{K(s+0.1)}{s^2(s+1)}$ OR (a) A process transfer function is described as follows:	20	CO4

$$G(s) = \frac{10}{s^3 + 4s^2 + 6s + 8}$$
 Sketch the polar plot for $G(s)$ by properly labelling the key frequencies in $G(j\omega)$ plane.
(b) Draw the Root Locus for the closed loop system given below, where

(b) Draw the Root Locus for the closed loop system given below, where a is the gain of the open loop transfer function, having a range $0 < a < \infty$.

