Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Strength of Materials

Program: BTech (Civil Engineering)

Semester: IV

Time : 03 hrs.

Course Code: MECH2018 Max. Marks: 100

Instructions:

- Attempt all questions.
- Use neat diagrams wherever necessary.
- Assume suitable data if required.

SECTION A (5Qx4M=20Marks)

S. No.		Mark s	СО
Q 1	Fill in the blank: a) The unit of stress is b) Torque produces stress in a shaft.	2 2	CO1
Q 2	Prove that the hoop stress in thin-walled pressure vessel is exactly twice the longitudinal stress.	4	CO2
Q 3	What are your key observations and learnings from the ongoing civil work at Block 11, where you have been attending Strength of Materials (SOM) classes on the ground floor?	4	CO1
Q 4	A steel column 4 m high and fixed at both ends has a diameter of 150 mm. Find the critical buckling load. Use E=200 GPa.	4	CO2
Q 5	A steel rod of cross-sectional area 300 mm ² is subjected to a tensile force of 12 kN. Find the stress and strain in the rod. Assume Young's Modulus E=200 GPa.	4	CO1
<u> </u>	SECTION B		
	(4Qx10M = 40 Marks)		
	Attempt any four questions		
Q 6	A cylindrical pressure vessel having an outer radius 100 mm, wall thickness 4 mm, is subjected to internal pressure of 100 bar. Determine: i. The hoop stress and longitudinal stress. ii. Is the design safe if the material yield strength is 50 MPa?	4+2+	CO2
	iii. Also calculate hoop stress and longitudinal stress for the spherical pressure vessel having the same outside radius.		

Q 7	i. A steel cable of length 10 m and diameter 30 mm is subjected to a tensile force of 200 kN. If the modulus of elasticity of steel is 200 GPa, calculate the strain energy stored in the cable	5	CO4
	ii. Briefly explain the physical significance of the equivalent length of a Column in civil engineering applications.	5	
Q 8	A steel pipe carrying water as shown in the below figure. Hope all of you have seen it on our UPES campus. Supports are four meters apart.		
			CO1
	Given:		
	Pipe outer diameter: 100 mm		
	Pipe wall thickness: 4 mm		
	• Density of water: 1000 kg/m ³		
	• Steel density (for pipe weight): 7850 kg/m ³		
	Calculate: Weight per meter of the pine (weter pine)	5	
	i. Weight per meter of the pipe (water + pipe)ii. Reactions at each support	5	
	n. Reactions at each support		
Q 9	A solid steel shaft used in a fire hose reel is subjected to torsional force while unwinding the hose during a fire emergency. The shaft must be strong enough to withstand the applied torque without failure.		
	Given:		
	> Length of the shaft (L): 0.8 m		
	 Diameter of the shaft (d): 30 mm Torque applied (T): 150 Nm 		CO2
	 Modulus of rigidity (G): 80 GPa 		
	> Allowable shear stress for steel: 60 MPa		
	Calculate:	_	
	i.Maximum shear stress developed in the shaft	4	
	ii.Angle of twist over the shaft length	4	
	iii.Check if the shaft is safe under the applied torque	2	

	 iv. Calculate support reactions at point B and D v. Draw shear force diagram (SFD) vi. Draw bending moments diagram (BMD) Note: show all the calculation steps 	4+4 6 6	
Q12	Derive the deflection curve and slop equations using double integration method of beam AB supporting a uniformly distibuted load of intensity q, as shown in below figure: Also determine max defelection at center of beam and slop at point A. Flexural rigidity of the beam is EI. Note: show all the calculation steps	10+5 +5	CO 4